Энергия и обмен веществ в организме человека. Обмен энергией в организме

Прямая и непрямая калориметрия. и энергии, по существу, единый процесс. В итоге сложных превращений, совершающихся в организме, образуется тепло.

Определить количество освобождающейся в организме энергии можно методами прямой и непрямой калориметрии.

Рис. 103. Схема калориметра.

Продуцируемое организмом человека тепло измеряется с помощью термометров 1 и2 по нагреванию воды, протекающей по трубам в камере 4. Количество протекающей воды измеряют в баке 3. Через окно 5 подают пищу и удаляют экскременты. Посредством насоса 6 воздух извлекают из камеры и прогоняют через баки с серной кислотой (7 и 9) для поглощения воды и с натронной известью (8) для поглощения углекислого газа. подают в камеру из баллона 10 через газовые часы 11. Давление воздуха в камере поддерживают на постоянном уровне посредством сосуда с резиновой мембраной (12)

Прямую калориметрию производят с помощью специальных аппаратов - калориметрических камер (рис. 103).

Вкамере стенки не проводят тепло. По потолку камеры проходит система трубок с водой. Человека на определенное время помещают в такую камеру. Тепло, выделяемое организмом, нагревает воду в системе трубок. Измеряют температуру поступающей и вытекающей из камеры воды; определяют разность температур и количество протекшей воды. Это дает возможность прямо получить данные о количестве энергии, выделенной организмом в единицу времени.

Показатели, полученные методом прямой калориметрии, точные. Но метод этот весьма сложен, громоздок, а главное - не дает возможности измерять энергетические затраты организма при любых видах деятельности человека (езда на велосипеде^ работа у доменной печи и др.).

Проще производить расчеты расхода энергии методом непря мой калориметрии. Источником энергии в организме служат окислительные процессы, при которых потребляется и образуется углекислый газ. Чем больше организм освобождает, энергии, тем интенсивнее в нем идут окислительные процессы. Следовательно, тем больше организм потребляет кислорода и выделяет углекислого газа. Поэтому об энергетических процессах в организме можно судить не только по количеству энергии, отдаваемой в окружающую среду, как это делают при прямой калориметрии, но и по количеству поглощенного кислорода и выделенного углекислого газа, т. е. по величине газообмена.

Для определения количества поглощенного кислорода и выделившегося углекислого газа пользуются различными приспособлениями. В производственных и учебных условиях для этой цели используют маски. Маска через систему клапанов соединена с мешком из воздухонепроницаемой ткани (рис. 104), укрепляемым на теле испытуемого. Клапаны дают возможность свободно вдыхать атмосферный воздух, а выдыхаемый воздух направляется в мешок. Выдохнутый воздух из мешка пропускают через газовые часы для определения его объема, а затем химическим путем определяют в нем процентное содержание кислорода и углекислоты.

Поглощаемый организмом идет на окисление белков, жиров и углеводов. Для окисления 1 г белка, жира или углеводов требуется разное количество кислорода, а следовательно, при этом освобождается и разное количество энергии (табл. 19).

Таблица 19

Образование энергии при окислении веществ в организме

, окисляющиеся в организме При окислении 1 г питательных веществ Количество освобождающейся

энергии (в Дж)

потребляется кислорода (в л) выделяется углекислого газа (в л) при потреблении 1 л кислорода при выделении 1 л

углекислого газа

Белки

Жиры

0,970

2,030

0,830

0,829

1,431

0,829

18,6

19,8

21,1

23,8

27,8

21,1

Из таблицы видно, что потребление 1 л кислорода и выделение 1 л углекислого газа сопровождается образованием определенного количества энергии. Однако при этом необходимо знать, какие вещества-белки, жиры или - окислялись в организме. Для этого определяют величину дыхательного коэффициента.

Рис. 104.

Дыхательным коэффициентом называют отношение объема выделенного организмом углекислого газа к объему поглощен ного кислорода. Дыхательный коэффициент различен при окислении белков, жиров и углеводов. Окисление углеводов (глюкозы, например) можно выразить формулой

С 6 Н 12 О 6 + 6О 2 = 6СО 2 + 6Н 2 О

Из уравнения видно, что при окислении глюкозы числа молекул образовавшегося углекислого газа и поглощенного кислорода равны. Следовательно, дыхательный коэффициент при оки слении углеводов равен единице (6СО 2: 6О 2 = 1)

В молекуле жира мало внутримолекулярного кислорода, поэтому на окисление ее требуется больше кислорода. Дыхательный коэффициент в этом случае меньше 1 (0,7). При окислении белков дыхательный коэффициент равен 0,8. При смешанной пище, которую обычно употребляет человек, дыхательный коэффициент составляет 0,85-0,9.

При окислении белков, жиров и углеводов (при потребления 1 л кислорода) освобождается разное количество энергии. Следовательно, при разном дыхательном коэффициенте количество освобождающейся энергии при поглощении 1 л кислорода будет различным.

Эта зависимость видна из таблицы 20.

Таблица 20

Зависимость количества энергии, освобождаемой при окислении, от величины дыхательного коэффициента

Зная величину газообмена, можно вычислить расход энергии в организме. Поступают при этом так.

По количеству потребленного кислорода и выделившегося углекислого газа определяют дыхательный коэффициент. Затем по таблицам устанавливают количество энергии, образующейся при поглощении 1 л кислорода (или при выделении 1 л углекислого газа) при данном дыхательном коэффициенте. Полученную величину умножают на количество литров поглощенного кислорода. Таким образом определяют количество энергии, выделенной человеком за определенное время.

Метод назван непрямой калориметрией потому, что мы о количестве энергии; выделенной организмом, судим по количеству поглощенного кислорода (или выделившегося углекислого газа) в единицу времени.

Основной обмен. Даже в условиях полного покоя человек расходует некоторое количество энергии. В организме непрерывно тратится энергия на физиологические процессы, которые не останавливаются ни на минуту.

Минимальный для организма уровень обмена веществ и энергетических затрат называют основным обменом. Основной обмен определяют у человека в состоянии мышечного покоя - лежа, натощак, т. е. через 12-16 ч после еды, при температуре окружающей среды 18-20°С (температура комфорта). У человека среднего возраста основной обмен составляет 4187 Дж на 1 кг массы в 1 ч. В среднем это 7 140000-7560000 Дж в сутки. Для каждого человека величина основного обмена относительно постоянна.

Основной обмен у детей интенсивнее, чем у взрослых, так как на единицу массы у них приходится относительно большая поверхность тела, чем у взрослого человека. Значительно преобладают также процессы ассимиляции над процессами диссимиляции.

Энергетические затраты на рост тем больше, чем моложе ребенок. Так, расход энергии, связанный с ростом, в возрасте трех месяцев составляет 36%, в возрасте шести месяцев-26%, девяти месяцев-21% общей калорийности пищи.

Колебания основного обмена и большая его интенсивность в младшем возрасте ясно выражены при расчете как на единицу массы, так и на единицу поверхности (табл. 21).

Таблица 21

Изменение основного обмена у детей

Возраст Величина основного обмена (в Дж)
на 1 кг массы на 1 м 2 поверхности
мальчики девочки мальчики девочки
8 240660 200 340 6 190 800 5 106 400
9 220080 189000 5 821 200 5019000
10 201 600 180600 5 392 800 4 893 000
11 202020 186060 5 586 000 4 118 800
12 173 640 169 260 5103000 4 946 800
13 14 163800 151 200 4 851 000 4 557 000
166480 142 800 4 909 800 4510 000
15 151 200 132 300 4 799 000 4 477 200
16 140280 115 500 4 897 000 4 054 200
17 129 360 113 400 4 968 600 3 864 000
18 118 020 106260 4 835 200 3 604 400

Основной обмен на 1 кг массы у взрослого человека составляет 96600 Дж. Таким образом, у детей 8 -10 лет основной обмен в 2-2,5 раза выше, чем у взрослых.

Величина основного обмена у девочек несколько ниже, чем у мальчиков. Это различие начинает проявляться уже во второй половине первого года жизни.

Выполняемая работа у мальчиков влечет более высокий расход энергии, чем у девочек.

Определение величины основного обмена часто имеет диагностическое значение. Повышается основной обмен при избыточной функции щитовидной железы и некоторых других заболеваниях. При недостаточности функции щитовидной железы, гипофиза, половых желез основной обмен снижается.

Расход энергии при мышечной деятельности

Чем тяжелее мышечная работа, тем больше энергии тратит человек. У школьников подготовка к уроку, урок в школе требуют энергий на 20-50% выше, чем энергия основного обмена.

При лабораторных занятиях, ручном труде, несложной гимнастике, играх средней подвижности затраты энергии на 75- 125% превышают величины основного обмена.

При ходьбе затраты энергии на 150-170% превышают основной обмен. При беге, подъеме по лестнице затраты энергии в 3-4 раза превышают основной обмен.

Тренировка организма значительно сокращает расход энергии на выполняемую работу. Это связано с уменьшением числа мышц, принимающих участие в работе, а также с изменениями дыхания и кровообращения.

При механизации труда в сельском хозяйстве и промышленности, внедрении машинной техники снижаются затраты энергии работающими людьми. При умственном труде энергетические затраты ниже, чем при физическом.

Материальной основой жизни являются белки. В состав клеток и тканей тела человека входит множество различных белковых веществ. В процессе жизнедеятельности организма они претерпевают сложнейшие изменения, беспрерывно распадаются на составные части и вновь воссоздаются, синтезируются.

На восстановление составных частей клеток, тканей и органов требуются не только исходные материалы - аминокислоты, углеводы и т. д., но и значительное количество энергии. Любое движение, происходящее в живом организме, как бы оно ни проявлялось - всегда требует затраты энергии.

А сколько энергии нужно для выполнения работы, которая идет внутри живого организма! Днем и ночью, например, сокращается и расслабляется сердце. Оно прогоняет по кровеносным сосудам кровь, несущую клеткам и тканям питательные вещества и кислород. Выделение пищеварительных соков, процессы всасывания также требуют затраты энергии. Ведь в течение суток, например, в желудке человека вырабатывается и выделяется более литра желудочного сока, а в кишечник поступает около литра сока поджелудочной железы и столько же кишечного сока и желчи.

Удивительнейшей «работоспособностью» обладает такой орган, как наши почки. За 24 часа здесь фильтруется более 170 литров жидкости - «первичной мочи», из которых почти 169 литров всасывается обратно в кровь. В результате этого сложного процесса фильтрации и обратного всасывания образуется и выделяется всего один - полтора литра мочи, которая содержит конечные продукты обмена веществ.

Таким образом, все физиологические процессы требуют расхода энергии, а следовательно, бесперебойного ее притока. Откуда же черпает организм энергетические ресурсы?

Первичным источником энергии являются продукты питания: белки, жиры и углеводы – наша пища. Она подвергается в организме очень сложной химической обработке, в желудке и кишечнике белки расщепляются на аминокислоты, сложные углеводы (например, крахмал, гликоген) распадаются на более простые, главным образом глюкозу, а из жиров образуются глицерин, жирные кислоты и т. д. Вновь образовавшиеся вещества всасываются в кровь. В процессе расщепления сложных веществ, входящих в состав продуктов питания, выделяется энергия, но в столь незначительном количестве, что оно ни в коей мере не может удовлетворять потребности организма.

Что служит основным источником энергии в нашем организме

Давайте проследим за дальнейшей судьбой веществ, поступивших в кровь. Благодаря чрезвычайно разветвленной сети кровеносных сосудов и капилляров они вместе с кровью попадают во все участки организма. Эти вещества в кровеносном русле постепенно смешиваются с теми, которые образовались в результате распада белков, жиров и углеводов, входящих в состав самих органов и тканей. Вместе они составляют «фонд» разнообразных химических соединений. Очень важно, что из этого «фонда» организм может выбрать все необходимое ему для построения новых клеток, для восстановления разрушенных структур органов, для образования различных пищеварительных соков, «секрета» желез и, наконец, для образования легко «сгорающего» материала, окисление которого обеспечивает необходимые энергетические ресурсы.

Можно ли более точно назвать вещества, образование которых в органах и тканях является подготовкой «горючего»?

ЕДИНАЯ «СЕМЬЯ» КИСЛОТ

Такими веществами являются относительно несложные по структуре органические кислоты. К их числу относится уксусная кислота в особой активной форме, пировиноградная, занимающая центральное место в окислительных процессах, затем янтарная, яблочная, щавелевоуксусная, кетоглутаровая и наконец лимонная.

Все перечисленные органические кислоты составляют как бы «единую» семью, члены которой при окислении последовательно переходили из одной формы в другую. В биологической химии существует специальное название этих окислительно -восстановительных реакций: лимоннокислый цикл.

Интересно отметить, что лимоннокислый цикл - характерная особенность большинства клеток и тканей человека, а также высокоорганизованных животных. Строго определенная последовательность окислительно-восстановительных реакций, происходящих в лимоннокислом цикле, вырабатывалась на протяжении миллионов лет в длительном процессе эволюции, приспособления живого организма к изменяющимся условиям внешней среды.

Последовательность химических превращений в лимонно - кислом цикле обеспечивают белки - ферменты. Они обладают чрезвычайно высокой активностью и поэтому могут ускорять и направлять химические реакции, обеспечивая переход от одного звена лимоннокислого цикла к другому.

Слов нет, все химические превращения лимоннокислого цикла достаточно сложны, и чтобы понять, откуда и как организм берет запасы энергии, необходимо хотя бы схематично рассказать об этих превращениях.

Как же они происходят? Начнем со щавелевоуксусной кислоты. Она - единственная из «семьи» кислот, которая вступает в цель окислительных реакций и выходит из них без изменений. Пировиноградная кислота, образующаяся, например, при распаде глюкозы, превращается в углекислоту и активную форму уксусной кислоты. Последняя, соединяясь со щавелевоуксусной кислотой, образует лимонную, которая затем превращается в кетоглутаровую и угольную. Кетоглутаровая кислота через янтарную и яблочную переходит в щавелевоуксусную и угольную кислоту. Далее все реакции вновь повторяются.

B результате множества строго последовательных химических реакций полностью исчезает пировиноградная кислота. Она окисляется до конечных продуктов - углекислого газа и воды.

Углекислый газ из клеток органов и тканей, где протекало окисление пировиноградной кислоты, переходит в венозную кровь, затем в легочные альвеолы и удаляется из организма вместе с выдыхаемым воздухом.

Вторым, очень важным моментом, связанным, с окислением пировиноградной кислоты, является повторное (пятикратное) отщепление водорода. Здесь следует сказать о наиболее характерной особенности окислительных процессов, происходящих в организме человека, а также животных. Она как раз и заключается в том, что водород не сразу вступает в реакцию с кислородом, доставляемым кровью к клеткам органов и тканей.

В живом организме имеются специальные переносчики водорода. Они как бы принимают его на себя и постепенно, от одного переносчика к другому, переносят водород к кислороду. Благодаря этому энергия образования воды выделяется также постепенно, порциями. А ведь известно, что при соединении водорода с кислородом вода образуется со взрывом - взрывом гремучего газа. Например, было определено, что при образовании 18 граммов воды (ее молекулярный вес-18) освобождается 55 больших калорий. В живом организме энергия образования воды распределяется между многими промежуточными реакциями. Те же 55 больших калорий, конечно, также освобождаются при образовании 18 граммов воды, однако относительно небольшими порциями, которые не могут нанести какой бы то ни было ущерб организму.

Из всех этих расчетов и рассуждений следует один очень важный вывод: наиболее значительнее количество энергии в организме человека, а также высокоорганизованных животных освобождается не при расщеплении белков, жиров м углеводов, входящих в состав пищи в пищеварительном тракте, а в процессе окисления пировиноградной кислоты или других органических веществ при переносе водорода к кислороду, завершающимся образованием воды.

На рисунке: Белки, жиры и углеводы, входящие в состав пищи, расщепляются в желудочно-кишечном тракте под действием пищеварительных соков на составные части. Образовавшиеся соединения разносятся кровью по всему телу (А) и попадают в различные органы, в том числе и в печень (Б).
На рисунке (В) показаны клетки печени с условным изображением происходящих в них процессов.
В результате сложных биохимических процессов в органах и тканях образуются различные органические кислоты. Они показаны в виде геометрических фигур, заполняющих ткань печени (1).
Под действием специальных белков - ферментов - эти органические кислоты расщепляются до конечных продуктов - углекислого газа (СО2) и воды (Н2О). Углекислый газ удаляется из организма через легкие при выдохе (2). Вода (3) образуется благодаря тому, что атомы водорода (2Н), освобождающиеся при расщеплении органических кислот, передаются кислороду (О), поступающему из воздуха, причем передача эта происходит не сразу, а постепенно с помощью специальных ферментов-переносчиков (4). Именно на этапах передачи водорода кислороду высвобождается значительное количество энергии.
Вся образовавшаяся энергия распределяется следующим образом: около 50 процентов энергии превращается в тепло (5); другая же половина энергии накапливается, аккумулируется в виде особых фосфорсодержащих соединений, основным представителем которых является аденозинтрифосфат - АТФ.
При дальнейшем расщеплении фосфорсодержащих соединений также выделяется свободная энергия. Эта энергия может легко превращаться в любой другой вид энергии: механическую (6) энергию, необходимую для деятельности мозга (7), химическую, идущую на образование и выделение различных соков в пищеварительном тракте (8), в энергию, которая необходима организму для «строительства» новых клеток и тканей (9).

ИСТОЧНИКИ ЭНЕРГИИ В ОРГАНИЗМЕ

Каким же образом освобождающаяся при окислении энергия используется организмом? Приблизительно половина энергии рассеивается в виде тепла. Оно крайне необходимо для поддержания постоянной температуры тела. Остальная часть энергии накапливается в виде богатых энергией фосфорных соединений.

К числу таких соединений относится довольно большое количество веществ, в структуру которых входят непрочно связанные остатки фосфорной кислоты. Под влиянием различных ферментов они легко отщепляются, причем разрыв связей сопровождается освобождением большого количества свободной энергии, которая способна перейти а любой другой вид энергии - в механическую, электрическую, химическую, тепловую и т. д.

Когда человек здоров, в составе его мозга, мышц, внутренних органов содержится достаточное количество богатых энергией фосфорных соединений. Расщепление этих веществ позволяет производить нам мышечную работу, обеспечивает энергию передачи возбуждения по нервным волокнам, дает энергию м для других, весьма различных проявлений жизни.

Возможность образования в живом организме богатых энергией фосфорных соединений за счет энергии окисления была впервые доказана в 1930 году. Это одно из самых замечательных открытий в области биохимической энергетики.

В дальнейшем ученые очень обстоятельно разработали проблему накопления, аккумуляции энергии в фосфорных соединениях. Прежде всего исследования показали, что универсальным веществом, накапливающим энергию, является аденозинтрифосфат (сокращенно он называется АТФ). В состав этого вещества входят три остатка фосфорной кислоты, причем два из них непрочно связаны с остальной частью молекулы АТФ. Когда в результате сложных химических превращений такие связи разрываются, то освобождается энергия, необходимая организму для самых различных процессов жизнедеятельности.

Рассмотрим несколько примеров. Представьте себе работающее сердце. Огромное количество энергии требуется для проталкивания крови по сосудам. Энергия сокращения сердечной мышцы черпается из запасов АТФ. Далее во время сокращения сердечной мышцы ее клетки постоянно изнашиваются, разрушаются. Чтобы восстановить их структуру, также необходимы затраты АТФ.

Естественно, что количество АТФ должно все время пополняться. Если сердце по той или иной причине не получит из крови достаточного количества легко окисляемых веществ, «горючего», а также кислорода, необходимых для образования АТФ, то неизбежно пострадает или сила сердечных сокращений или процесс восстановления изнашивающейся ткани сердца, в том и другом случае наступит нарушение сердечной деятельности. Примерно то же самое можно сказать о любом органе и организме в целом.

Еще один пример. Всем известно, какие разнообразные процессы обмена веществ протекают в печени - органе, который образно называют важнейшей биохимической лабораторией организма. Здесь происходит образование конечного продукта азотистого обмена - мочевины, синтез многих белков, в том числе и тех, которые входят в состав крови, окисление и синтез жирных кислот и т. д.

Все процессы биологического синтеза, протекающие в печени, идут с затраюй энергии и требуют постоянного расхода АТФ. При нормальном снабжении печеночных клеток кровью АТФ беспрерывно образуется за счет энергии окислительных процессов, но если снабжение печени кровью нарушится (например, у алкоголиков печеночные клетки замещаются соединительной тканью и в результате развивается цирроз печени) или притекающая кровь будет бедна кислородом, то траты АТФ не смогут своевременно восполняться. Это повлечет за собой постеленное нарушение процессов обмена веществ, происходящих в печени, тяжелое заболевание всего организма.

Итак, для образования и постоянного пополнения АТФ чрезвычайно важно снабжать все ткани кислородом. Но только ли за счет энергии окислительных процессов образуется АТФ? Ведь даже а самых обычных условиях может наступить временный, относительный недостаток в снабжении организма иди отдельных его органов и тканей кислородом. Организм обладает замечательной способностью образовывать АТФ за счет сбраживания углеводов. Этот процесс происходит без потребления кислорода, но он дает организму немного энергии. И хотя эффективность процесса бескислородного распада углеводов невелика, он может на некоторое время поддержать жизнь организма. Правда, к недостатку кислорода очень чувствительны такие важнейшие органы, как мозг, сердце, почки. Поэтому кислородное голодание нарушает а первую очередь деятельность именно этих органов.

Жизнь нашего организма может нормально протекать только при постоянном обмене веществ и энергией с окружающей средой,в движении, бесперебойной деятельности нервной системы и внутренних органов. Все проявления жизни связаны с использованием свободной энергии, которая содержится в клетках организма в виде богатых энергией фосфорных соединений. Непрерывный расход энергии требует постоянного ее пополнения. Вот почему так важно строго соблюдать рациональный режим труда, отдыха, питания - вести здоровый образ жизни.

Лекция 9. Обмен веществ и энергии в организме. Питание Пластический и энергетический обмен. Обмен энергии в организме. Обмен белков. Азотистое равновесие. Обмен жиров и углеводов. Водно-солевой обмен. Питание. Нормы питания.

Обмен веществ, или метаболизм, — лежащий в основе жизни закономерный порядок превращения веществ и энергии в живых системах, направленный на их сохранение и самовоспроизведение; совокупность всех химических реакций, протекающих в организме. Ф. Энгельс, определяя жизнь, указывал, что ее важнейшим свойством является постоянный ОВ с окружающей внешней природой, с прекращением которого прекращается и жизнь. Т. о. , ОВ — существеннейший и непременный признак жизни.

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ Питательные вещества: Белки Жиры Углеводы витамины минеральные вещества Н 2 О О 2 Продукты обмена: СО 2 мочевина и т. д. Н 2 О Тепло. Организм человека Процессы ассимиляции (анаболизма) и диссимиляции (катаболизма)Окружающая среда→ →

Две стороны обмена веществ: Пластический обмен – процессы, направленные на рост и обновление структур организма Энергетический обмен – процессы, направленные на энергообеспечение функций организма (в том числе пластического обмена)

Энергетический обмен включает: энергетический катаболизм – распад субстратов для выработки энергии; энергетический анаболизм – синтез субстратов для запасания энергии. Пластический обмен включает: пластический катаболизм – распад старых структур для их обновления; пластический анаболизм – построение новых структур.

УРОВНИ ИНТЕНСИВНОСТИ ЭНЕРГООБМЕНА КЛЕТКИ: Уровень поддержания целостности клетки — 15% Уровень функциональной готовности клетки — 50% Уровень функциональной активности клетки — 100% ЭНЕРГЕТИЧЕСКИЙ БАЛАНС: Образование Э. = Э. работы + Э. теплопотерь + Э. запас.

Энергетический баланс – это соотношение между количеством энергии, поступающей с пищей, и энергией, расходуемой организмом. Энергетическое равновесие Положительный энергетический баланс Отрицательный энергетический баланс

Общий обмен (ОО) – это суточные энергозатраты на все виды деятельности Общий обмен складывается из: основного обмена (Ос. О) специфически динамического действия пищи (СДДП) рабочей прибавки (РП)

Основной обмен — это суточные энергозатраты организма в условиях покоя. Ос. О определяется в стандартных условиях: — бодрствование — физический (лежа) и психический покой — натощак – через 12 -14 ч после приема пищи (белки исключаются за 2 -3 дня) — в условиях температурного комфорта (18 -20 о С)

ОСНОВНОЙ ОБМЕН – должный и фактический Должный Ос. О – это величина Ос. О, которая должна быть у человека с учетом пола, роста, массы тела и возраста. Определяют: — по таблицам Гарриса и Бенедикта — по формулам Гарриса и Бенедикта — по приближенной формуле (на 1 кг массы тела расходуется 1 ккал в час) ДОс. О = 1 ккал × масса тела × 24 час. — по площади поверхности тела

ОСНОВНОЙ ОБМЕН – должный и фактический Фактический Ос. О — это величина Ос. О, которая имеется у человека в действительности. Определяется методом калориметрии. Определяют % отклонения ФОс. О от ДОс. О. Отклонения ФОс. О от ДОс. О ± 10% норма.

Расходы энергии основного обмена: — на работу мозга (18%), — печени (26%), — почек (7%), — сердца (9%), — мышечный тонус (26%) — работу других органов (14%).

Специфически динамическое действие пищи (СДДП) СДДП – это дополнительные к величине Ос. О энергозатраты, связанные с приемом пищи. СДДП зависит от вида принимаемой пищи: белки + 28 -30%, жиры + 12 -14%, углеводы + 7 -8%. смешнное питание + 15%.

Основной обмен зависит от возраста пола роста массы тела функции эндокринных желез

Рабочая прибавка — это дополнительные к величине Ос. О энергозатраты, связанные с выполнением различных видов работ Работа Физическая Умственная Суточные энергозатраты (общий обмен) = Ос. О × КФА (коэффициент физической активности)

Классификация работающих в зависимости от вида трудовой деятельности 1 группа – работники преимущественно умственного труда, (научные работники, студенты гуманитарных специальностей, операторы ЭВМ, педагоги и др.) Коэффициент физической активности (КФА) – 1,

Классификация работающих в зависимости от вида трудовой деятельности 2 группа – работники, занятые легким трудом, КФА – 1, 6 (водители трамваев, троллейбусов, агрономы, врачи, медсестры, работники сферы обслуживания и др.) 3 группа – работники средней тяжести труда, КФА – 1, 9 (слесари, станочники, водители автобусов, врачи-хирурги, металлурги-доменщики и др.)

Классификация работающих в зависимости от вида трудовой деятельности 4 группа – работники тяжелого физического труда, КФА – 2, 2 (строительные рабочие, механизаторы, металлурги и литейщики и др.) 5 группа – работники особо тяжелого физического труда, КФА – 2, 5 (горнорабочие, вальщики леса, землекопы и др.)

Расчет энергетического баланса Расчет энергозатрат: определение количества тепла, выделяемого из организма. методы калориметрии: Прямая Непрямая (газовый анализ)

Непрямая калориметрия Полный газовый анализ- определение энергозатрат организма на основании потребленного О 2 и выделенного СО 2.

Ассимиляция – совокупность процессов создания структур организма с накоплением энергии. Поступление из внешней среды веществ, необходимых для организма; превращение питательных веществ в соединения, которые могут использоваться клетками и тканями; синтез структурных элементов клеток, ферментов и т. д. , замена устаревших новыми; синтез более сложных соединений из более простых; отложение запасов.

Диссимиляция – совокупность процессов распада живой материи с выделением энергии. Мобилизация запасов организма; Расщепление сложных органических соединений до более простых; распад устаревших тканевых и клеточных элементов; Расщепление богатых энергией соединений с освобождением энергии; Выведение продуктов распада из организма.

Эндокринная регуляция обменных процессов Гормоны, регулирующие преимущественно энергетический обмен: адреналин глюкагон глюкокортикоиды инсулин

Основные механизмы действия гормонов на метаболизм ГОРМОН УГЛЕВОДЫ ЛИПИДЫ БЕЛКИ АДРЕНАЛИН ГЛИКОГЕНОЛИЗА (В ПЕЧЕНИ И МЫШЦАХ) ЛИПОЛИЗА — ГЛЮКОКОРТИ- КОИДЫ ГЛЮКОНЕОГЕНЕЗА ЛИПОЛИЗА ↓ СИНТЕЗА РАСПАДА ГЛЮКАГОН ГЛИКОГЕНОЛИЗА (В ПЕЧЕНИ, НО НЕ В МЫШЦАХ) — — ИНСУЛИН ТРАНСПОРТА В КЛЕТКИ, ОСОБЕННО МЫШЦ И ПЕЧЕНИ ↓ ГЛИКОГЕНОЛИЗА ↓ ГЛЮКОНЕОГЕНЕЗА ГЛИКОГЕНЕЗА ЛИПОГЕНЕЗА ИЗ УГЛЕВОДОВ ↓ ЛИПОЛИЗА СИНТЕЗА ↓ РАСПАДА

Эндокринная регуляция обменных процессов Гормоны, регулирующие иные обменные процессы (пластический обмен, терморегуляцию) и, как следствие – энергетический обмен: тиреоидные гормоны соматотропный гормон тестостерон эстрогены

Основные механизмы действия гормонов на метаболизм ГОРМОН Углеводы Липиды Белки ТИРЕОИДНЫЕ ГОРМОНЫ УСИЛИВАЮТ МНОЖЕСТВО ПРОЦЕССОВ МЕТАБОЛИЗМА С ПРЕОБЛАДАНИЕМ СИНТЕЗА БЕЛКА И РАСПАДА ЛИПИДОВ И УГЛЕВОДОВ СТГ ↓ ТРАНСПОРТА В КЛЕТКИ, ОСОБЕННО МЫШЦ И ПЕЧЕНИ ЛИПОЛИЗА СИНТЕЗА ТЕСТОСТЕРО Н — — СИНТЕЗА, В ОСНОВНОМ В МЫШЦАХ ЭСТРОГЕНЫ — ЛИПОГЕНЕЗА В ХАРАКТЕРНЫХ МЕСТАХ СИНТЕЗА

Энергетические субстраты различаются по: скорости высвобождения энергии в процессе катаболизма; емкости депо (величине запасов). Чем выше скорость высвобождения энергии субстрата, тем меньше его запасы.

Энергетические субстраты Углеводы – это субстрат с быстрым высвобождением энергии, но малыми резервами («быстрое топливо» организма); Липиды – это субстрат с медленным высвобождением энергии, но большими резервами («резервное топливо» организма).

Характеристика углеводов Быстрый энергетический субстрат. растворимы в воде могут достигать высокой концентрации в крови; поставка У к работающим тканям может быть быстрой и значительной служат энергетическим субстратом для тканей с быстрым использованием энергии.

Значение углеводов Нервная ткань использует почти исключительно углеводы. Мелкие молекулы углеводов осмотически активны. Уровень глюкозы в крови должен поддерживаться на постоянном уровне.

Характеристика липидов Молекулы Л: крупные, жирорастворимые (гидрофобные), обладают относительно низким содержанием атомов кислорода. обладают малой растворимостью. Л – медленный энергетический субстрат. Не могут достигать высокой концентрации в крови — не могут служить энергетическим субстратом для тканей с быстрым использованием энергии.

Пути превращений энергетических субстратов Расходование и депонирование (так как потребности в энергии постоянно изменяются). Переход на преимущественное использование того или другого субстрата (в зависимости от вида нагрузки, питания, некоторых других условий). Взаимное превращение субстратов.

Расчет энергетического баланса 1. Определение количества энергии, поступившей в организм: Количество белков, жиров и углеводов Калорические коэффициенты питательных веществ: при окислении – 1 г белка — 4, 1 ккал – 1 г жира — 9, 3 ккал – 1 г углеводов – 4, 1 ккал = 4, 19 к. Дж.

Распределение количества энергии, получаемой за счет белков, жиров и углеводов углеводы (55 -60%)жиры (30%)белки (10 -15%)

Органические вещества Функции Белки (полноценные, неполноценные) Строительная (пластическая), ферментативная, регуляторная, двигательная, защитная, транспортная, энергетическая Жиры (эссенциальные ЖК) Строительная, защитная, энергетическая, терморегуляторная, всасывание витаминов Углеводы («быстрые» , «медленные») Строительная, энергетическая, защитная (глюкуроновая к-та)

Обмен белков Резерв белков = 45 г (альбумины крови). При безбелковой диете в организме разрушается около 23 г белка (абсолютный белковый минимум). Физиологический белковый минимум — ~ 30 — 40 г в день. Белковый оптимум: ВЗРОСЛЫЙ ЧЕЛОВЕК — 1 г белка на кг массы тела. ПОЖИЛЫЕ ЛЮДИ И ДЕТИ – 1, 5 г белка на кг массы тела. ПРИ ФИЗИЧЕСКОЙ РАБОТЕ, БЕРЕМЕННОСТИ, ТЯЖЕЛЫХ ЗАБОЛЕВАНИЯХ — 2 г белка на кг массы тел а.

Азотистый баланс Это отношение количества азота, поступившего с пищей, к количеству азота, выделенного из организма. 100 г белка содержит 16 г азота (1 г азота соответствует 6, 25 г белка). Азотистый баланс: — равновесие — положительный — отрицательный

Азотистое равновесие – расход азота равен приходу (норма). Отрицательный азотистый баланс –расход азота больше прихода (при недостаточном приходе белка или усиленном его распаде, например, при опухолевом росте), так как: белки ни из чего не образуются; резервов белков практически нет; белки обязательно расходуются, даже если они не поступают. Б – преимущественно пластический субстрат.

Положительный азотистый баланс – приход азота больше расхода. Это наблюдается при усиленном образовании новых структур: росте; беременности; наращивании мышечной массы; после голодания при выздоровлении после изнуряющих болезней при условии, что поступление белка достаточно.

Обмен жиров Функции жиров: энергетическая пластическая защитная всасывание витаминов терморегуляция Суточная потребность – 1 -1, 2 г на 1 кг массы тела Биологическая ценность незаменимые жирные кислоты — полиненасыщенные: линолевая, линоленовая арахидоновая заменимые жирные кислоты

Характеристика липидов Липиды – пластический материал (основа биологических мембран). Липиды способствуют всасыванию в кишечнике жирорастворимых веществ (напр. , жирорастворимых витаминов). Подкожная жировая клетчатка — теплоизолятор. Отложения липидов выполняют важную механическую функцию (п/кожная ЖК смягчает механические травмы, жировые капсулы фиксируют внутренние органы) Липиды входят в состав или служат источником многих важных веществ (стероидные гормоны, желчные кислоты, простагландины и др.)

Обмен углеводов Функции углеводов: 1. энергетическая 2. пластическая 3. защитная (глюкуроновая к-та) Депо углеводов 300 – 400 гр. Моносахариды (глюкоза, фруктоза, галактоза, манноза) Полисахариды: — перевариваемые (крахмал, гликоген)- 80% — неперевариваемые (целлюлоза, пектиновые вещества)

Водно-солевой обмен совокупность процессов: всасывания, распределения, потребления, выделения воды и солей. Обеспечивает гомеостаз: постоянство осмотической концентрации, ионного состава, КЩР внутренней среды организма.

Функции воды в организме Функция растворителя — все вещества перед всасыванием растворяются в воде; транспортная – переносит питательные вещества к клеткам и уносит продукты распада; участие в окислительных процессах и других химических реакциях; терморегуляторная; входит в состав пищеварительных соков.

Водные пространства организма (классификация J. S. Edelman, J. Leibman 1959) Интрацеллюлярная жидкость (пространство) Экстрацеллюлярная жидкость (пространство): внутрисосудистая жидкость межклеточная жидкость (собственно интерстициальная) ● Трансцеллюлярная жидкость – вода в составе секретов желез ЖКТ и других, мочи, ликвора, жидкости полости глаз, отделяемого серозных оболочек, синовиальной жидкости

Интерстициальный (межклеточный) водный сектор, содержит 1/4 всей воды организма (15% массы тела); является наиболее подвижным, меняющим объем при избытке или недостатке воды в теле. Вся вода организма обновляется примерно раз в месяц; внеклеточное водное пространство — еженедельно.

«Третье пространство» Скопления внеклеточной жидкости, в которых не действуют физиологические механизмы регуляции водно-электролитного баланса, обозначают термином «третье пространство» ; это воды полостей тела: брюшной, плевральной и т. д.

Система регуляций водного баланса обеспечивает основные жизненные процессы: поддержание постоянства общего объема жидкости в организме, оптимальное распределение воды между водными пространствами и секторами организма. Факторы поддержания относительного водного постоянства: деятельность почек и других органов выделения, питьевое поведение и жажда.

Активация Р AA Ишемия почек. Симпатическая нервная система A ДГ ЖАЖДА Натриевый/Водный баланс Осмоляльность плазмы. Регуляция обмена натрия и объема внеклеточной жидкости Количество и тоничность жидкости. Уровень альдостерон а Гиповолеми я. Вазоконстрикция Гипотензи я ПНП

Гипергидратация – избыточное поступление и образование воды при неадекватно малом ее выделении из организма, ведущее к ее накоплению. Вода в основном накапливается в интерстициальном водном секторе. Значительная степень гипергидратации проявляется водной интоксикацией (возбуждение нервных центров и мышечные судороги).

Дегидратация – недостаточное поступление и образование воды или чрезмерно большое ее выделение, приводящее к уменьшению водных пространств, г. о. , интерстициального сектора. Сопровождается сгущением крови, ухудшением ее свойств и нарушением гемодинамики. Снижение количества воды до 20% массы тела ведет к летальному исходу.

Поступление воды Потребность человека в воде составляет в сутки 2 -2, 5 л. Источники: вода в составе питья (900 -1200 мл) и пищи (900 -1000 мл); вода эндогенная (300 -350 мл). Воду удаляют почки, потовые железы, легкие и кишечник. Почки за сутки удаляет 1 -1, 5 л воды в виде мочи. Потовые железы выделяют 500 -1000 мл в обычных условиях.

Выведение воды Через кишечник с калом выделяется 100 -150 мл воды. Потребленная вода / выведенная вода = водный баланс. Приход воды должен полностью покрывать расход, иначе наступают серьезные нарушения жизнедеятельности. Легкими в виде водяных паров выдыхается 350 -400 мл воды. При углублении и учащении дыхания за сутки может выделиться до 800 мл воды.

Питание. Основные принципы составления пищевого рациона Питание должно быть рациональным и сбалансированным, чтобы обеспечить сохранение здоровья, высокую работоспособность. Физиологические нормы питания зависят от возраста, пола, массы тела, климата, характера выполняемой работы и функционального состояния организма.

Требования, предъявляемые к пищевому рациону: ◘ Энергетическая достаточность; ◘ достаточность и сбалансированность поступления ◘ белков; ◘ жиров; ◘ углеводов; ◘ соотношение в пищевом рационе белков, жиров и углеводов; ◘ достаточность содержания витаминов и минеральных солей; ◘ кратность приема пищи и %-ное распределение приема пищи.

Энергетическая достаточность пищевого рациона Определение энергетической ценности пищевого рациона с учетом усвояемости питательных веществ. Усвояемость — животной пищи — 95% — растительной — 80% — смешанной — 85 -90% ПРАВИЛО ИЗОДИНАМИИ – ПИТАТЕЛЬНЫЕ ВЕЩЕСТВА, КАК ИСТОЧНИК ЭНЕРГИИ, ВЗАИМОЗАМЕНЯЕМЫ В СООТВЕТСТВИИ С ИХ ЭНЕРГЕТИЧЕСКОЙ ЦЕННОСТЬЮ.

Задумывались ли вы когда-нибудь над тем, какую огромную работу выполняют многочисленные клетки, органы и ткани нашего организма в процессе жизнедеятельности? Специалисты подсчитали, что энергии, необходимой, к примеру, для обеспечения деятельности сердца, печени, почек и мышц в одни лишь сутки хватило бы, чтоб вскипятить более 10 ведер воды!

Откуда же организм берет эту энергию?

Ее источником служит животная и растительная пища, содержащая белки, жиры, углеводы, минеральные соли и витамины.

Запасы энергии организм черпает при превращении органических веществ пищи: главным образом углеводов, частично жиров и в меньшей степени белков.

Процесс превращения энергии, заключенной в пище, в собственную энергию клеток

многоступенчат и сложен. Попробуем проследить основные его этапы. Под действием пищеварительных ферментов белки, жиры и углеводы превращаются в желудке и кишечнике в более простые вещества-мономеры. Белки распадаются на аминокислоты, жиры-на глицерин и жирные кислоты, углеводы-на моносахара.

Мономеры всасываются в кровь и лимфу. Из них в клетках (большую роль в этом процессе играют клетки печени) строятся индивидуальные, неповторимые по структуре белки, жиры и углеводы нашего организма. В процессе жизнедеятельности клетки они разрушаются, и тем быстрее, чем интенсивнее клетка работает. Процесс разрушения происходит в своеобразных энергетических станциях, которыми природа снабдила каждую клетку организма,-митохондриях. Это особые внутриклеточные образования, напоминающие внешне сосуд с жидкостью, полость которого разделена неполными перегородками. В одной клетке может быть от нескольких митохондрий до многих сотен. Именно здесь под воздействием ферментов и кислорода наши собственные органические вещества разлагаются до своих конечных продуктов-углекислого газа, воды и азотистых соединений. Таким образом организм «добывает» энергию, «сжигая» составляющие его клетки углеводы, жиры и белки.

Выделяющуюся энергию подхватывает особое вещество- аденозиндифосфорная кислота (АДФ),- превращаясь при этом в аденозинтрифосфорную кислоту (АТФ). АДФ и АТФ-универсальные переносчики и аккумуляторы энергии. Они могут удерживать энергию про запас, отдавая ее, когда это необходимо, для осуществления тех или иных жизненных процессов

Работают энергетические станции клетки весьма продуктивно: до 67 процентов образующейся энергии используется для выполнения различной работы: механической-при мышечной деятельности, электрической-при передаче нервных импульсов, химической-при образовании молекул в процессе роста и многих других. Сравните: кпд самых совершенных механизмов, созданных людьми, не превышает 40 процентов! В организме же даже те 33 процента энергии, которые рассеиваются в виде тепла, нельзя считать потерянными-ведь это тепло участвует в поддержании температуры нашего тела.

Но самое удивительное, что часть энергии идет на восстановление самих клеток, разрушающихся в процессе непрерывной деятельности. И чем больше приходится клетке трудиться, тем мощнее ее энергосистема, а значит, и способность самообновления.

Восстановление клеточной структуры-одно из уникальных свойств живого организма. Опыты показывают, что у человека половина всех тканевых белков распадается и строится заново в течение каждых восьмидесяти дней. Это средняя цифра. Некоторые белки замещаются гораздо быстрее, другие медленнее. Белки печени и сыворотки крови, к примеру, обновляются очень быстро-каждые 10 дней наполовину. У некоторых ферментов печени этот период составляет всего 2-4 часа. Белки мышц замещаются значительно медленнее, обновляясь каждые 180 дней.

С одной стороны, клетка непрерывно «сама себя сжигает». Этот процесс называется катаболизмом (от греческого katabole-сбрасывание вниз). Он сопровождается разрушением протоплазмы и выделением энергии. С другой стороны, клетка столь же непрерывно «сама себя строит». Место разрушенных сложных соединений протоплазмы занимают другие, такие же сложные и богатые энергией. Значит, анаболизм (от греческого anabole-подъем)-так называется процесс строительства-ведет к восстановлению протоплазмы и накоплению энергии.

Обе эти стороны обмена веществ должны быть уравновешены. Это значит, сколько веществ и энергии расходуется в результате различных процессов жизнедеятельности, столько же их и восстанавливается.

т. е. кузнецова

кандидат медицинских наук

Источником энергии в организме служат продукты гидролиза углеводов, жиров и белков, поступающие в организм. Освобожде­ние же энергии в организме происходит в процессе диссимиляции (катаболизма), т. е. распада клеточных структур и соединений ор­ганизма, которые синтезируются из питательных веществ, посту­пающих в кровь в результате пищеварения (гидролиза) пищевых продуктов и всасывания продуктов гидролиза в кровь. Различают основной и рабочий обмен.

А. Основным обменом называют минимальный расход энер­гии, обеспечивающий гомеостазис в стандартных условиях: при бодр­ствовании, максимальном мышечном и эмоциональном покое, нато-

щак (12 -16 ч без еды), при температуре комфорта (18° - 20°С). Основной обмен определяют в указанных стандартных условиях по­тому, что физическая нагрузка, эмоциональное напряжение, прием пищи и изменение температуры окружающей среды увеличивают интенсивность метаболических процессов в организме (расход энер­гии). Энергия основного обмена в организме расходуется на обеспе­чение жизнедеятельности всех органов и тканей организма, клеточ­ный синтез, на поддержание температуры тела.

На величину должного (среднестатистического) основно­ го обмена здорового человека влияют следующие факторы: пол, воз-. раст, рост и масса тела (вес). На величину истинного (реального) основного обмена здорового человека влияют также условия жизне­деятельности, к которым организм адаптирован: постоянное про­живание в холодной климатической зоне увеличивает основной обмен; длительное вегетарианское питание уменьшает. Величину должного основного обмена у человека определяют по табли­цам, формулам, номограммам.

Для определения величины истинного основного обмена у человека используют метод Крога (неполный газовый анализ, см. раздел 12.3).

Величина основного обмена в сутки у мужчин составляет 1500 -ъ 1700ккал (6300- 7140 кДж); в расчете на 1 кг массы в сутки равна 21-24 ккал (88 - 101 кДж). У женщин эти показатели примерно на 10% меньше.

Показатели основного обмена при расчете на 1м 2 поверхности тела у теплокровных животных разных видов и человека примерно равны, при расчете на 1 кг массы сильно отличаются: чем мельче организм, тем больше расход энергии.

Б. Рабочим обменом называют совокупность основного обме­на и дополнительного расхода энергии, обеспечивающего жизне­деятельность организма в различных условиях. Факторами, повы­шающими расход энергии организмом, являются: физическая и умственная нагрузка, эмоциональное напряжение, изменение тем­пературы и других условий окружающей среды, специфическиди-намическое действие пищи (увеличение расхода энергии после приема пищи). При этом изменение температуры в интервале 15 -30°С существенно не сказывается на энергозатратах организма. При температуре ниже 15°С, а также выше 30°С расход энергии увели­чивается. Повышение обмена веществ при температуре окружаю­щей среды ниже 15° предотвращает охлаждение организма.

Расход энергии организмом после приема белковой и смешан­ной пищи увеличивается на 20 - 30%, после приема жиров и угле­водов увеличивается на 10 - 12%.

Часть тепловой энергии, вырабатываемой организмом в процес­се его жизнедеятельности, обеспечивает механическую работу. Для определения эффективности этого преобразования вводится поня­тие коэффициент полезного действия организма при мышечной работе - это выраженное в процентах отношение энергии, эквива­лентной полезной механической работе, ко всей энергии, затрачен­ной на выполнение этой работы. Коэффициент полезного действия (КПД) у человека при мышечной работе рассчитывают по фор-

муле: КПД = ---100%, где А - энергия, эквивалентная полезной

работе, С - общий расход энергии, е - расход энергии за такой же промежуток времени в состоянии покоя. КПД равен 20%.


В. Потребность организма в энергии (ккал в сутки) опреде­ляется видом трудовой деятельности (табл. 10.1).

Напомним, что питание должно быть сбалансированным - со­отношение белков, жиров и углеводов 1:1, 2:4, 6, содержать доста­точное количество воды, минеральных солей и витаминов.

Г. Исследование прихода энергии в организм. Основными методами определения количества энергии в навеске продукта яв­ляются: физическая калориметрия; физико-химические методики определения количества белков, жиров и углеводов в навеске с по­следующим расчетом содержащихся в них энергий по таблицам.

Сущность способа физической калориметрии заключается в следующем: в калориметре сжигают навеску продукта, а затем по степени нагревания воды и материала калориметра рассчитывают выделившуюся энергию. Количество тепла, выделившегося при сго­рании продукта в калориметре, рассчитывают по формуле:

где О. - количество тепла, М - масса (в - воды, к - калориметра), (1 2 _ ^) ~ разность температур воды и калориметра после и до сжи­гания навески, С - удельная теплоемкость, 0 - количество теп­ла, образуемое окислителем.

Количество тепла, освобождаемое при сгорании 1 г вещества в калориметре, называют физическим калорическим коэффици­ентом, при окислении 1 г вещества в организме - физиологиче­ским калорическим коэффициентом. Основанием для расчета прихода энергии в организм по количеству усвоенных белков, жи­ров и углеводов является закон термодинамики Гесса, который гла­сит: термодинамический эффект зависит только от теплосодержа­ния начальных и конечных продуктов реакции и не зависит от промежуточных превращений этих веществ. При окислении в ор­ганизме 1 г белков освобождается 4, 1 ккал(17, 2кДж), 1 г жиров -9, 3 ккал (38, 9 кДж), 1 г углеводов - 4, 1 ккал (17, 2 кДж). При сгорании в калориметре жиров и углеводов выделяется столько же тепла, сколько в организме. При сгорании белка в калориметре энер­гии выделяется несколько больше, чем в организме, так как часть энергии белка при окислении в организме теряется с мочевиной и другими веществами белкового обмена, которые содержат энергию и выводятся с мочой.

Чтобы рассчитать приход энергии в организм с пищей, химическим путем определяют содержание белков, жиров и углеводов в продуктах питания, умножают их количество на соот­ветствующие физиологические калорические коэффициенты, сум­мируют и из суммы вычитают 10% - что не усваивается в пищева­рительном тракте(потери с калом).

Д. Расход энергии организмом определяют с помощью пря­мой и непрямой калориметрии. Основными из этих методов явля­ются следующие: прямая калориметрия - метод Этуотера - Бене­дикта; непрямая, или косвенная, калориметрия - методы Крога, Шатерникова, Дугласа - Холдена.

Принцип прямой калориметрии основан на непосредственном измерении количества тепла, выделенного организмом.

Принцип работы и устройство камеры Этуотера - Бене­ дикта. Камера, в которую помещают испытуемого, термически изо­лирована от окружающей среды, ее стенки не поглощают теп­ло, внутри них находятся радиаторы, через которые течет вода. По степени нагрева определенной массы воды рассчитывают количе­ство тепла, израсходованного организмом.

Принцип непрямой (косвенной) калориметрии основан на расчете количества выделившейся энергии по данным газообмена (поглощенный 0 2 и выделившийся С0 2 за,сутки). Количество вы­деляемой организмом энергии можно рассчитать по показателям газообмена потому, что количество потребленного организмом 0 2 и выделенного С0 2 точно соответствует количеству окисленных белков, жиров и углеводов, а значит, и израсходованной организ­мом энергии. Для расчета расхода энергии методом непрямой ка­лориметрии используются дыхательный коэффициент и калориче­ский эквивалент кислорода.

Дыхательным коэффициентом называют отношение объема выделенного организмом углекислого газа к объему потребленно­го за это же время кислорода. Величина дыхательного коэффици­ента зависит от соотношения белков, жиров и углеводов, окисляю­щихся в организме. Дыхательный коэффициент при окислении в организме белков равен 0,8, жиров - 0,7, углеводов -1,0. Дыха­тельный коэффициент для жиров и белков ниже, чем для углево­дов, вследствие того, что на окисление белков и жиров расходует­ся больше 0 2 , так как они содержат меньше внутримолекулярного кислорода, чем углеводы. Дыхательный коэффициент у человека в начале интенсивной физической работы приближается к единице, потому что источником энергии в этом случае являются преиму­щественно углеводы.

В первые минуты после интенсивной и длительной физической работы дыхательный коэффициент у человека больше единицы, так как С0 2 выделяется больше, чем потребляется 0 2 , поскольку мо­лочная кислота, накопившаяся в мышцах, поступает в кровь и вы­тесняет С0 2 из бикарбонатов.

Калорическим эквивалентом кислорода называют количест­во тепла, освобождаемого организмом при потреблении 1л 0 2 . Ве-

личина калорического эквивалента кислорода зависит от соотно­шения белков, жиров и углеводов, окисляющихся в организме. Ка­лорический эквивалент кислорода при окислении в организме (в процессе диссимиляции) белков, жиров и углеводов равен: для белков - 4, 48 ккал (18,8 кДж), для жиров - 4,69 ккал (19,6 кДж), для углеводов - 5,05 ккал (21,1 кДж).

Определение расхода энергии по способу Дугласа - Холдена (полный газовый анализ) осуществляют следующим образом. В те­чение нескольких минут испытуемый вдыхает атмосферный воз­дух, а выдыхаемый воздух собирают в специальный мешок, изме­ряют его количество и проводят анализ газов с целью определения объема потребленного кислорода и выделившегося С0 2 . Рассчиты­вают дыхательный коэффициент, с помощью которого по таблице находят соответствующий калорический эквивалент 0 2 , который затем умножают на объем 0 2 , потребленного за данный промежу­ток времени.

Метод М. Н. Шатерникова для определения расхода энер­ гии у животных в эксперименте заключается в следующем. Живот­ное помещают в камеру, в которую поступает кислород по мере его расходования. Выделяющийся при дыхании С0 2 поглощается ще­лочью. Расчет выделенной энергии осуществляется по количеству

потребленного 0 2 и усредненному калорическому эквиваленту 0 2: 4,9 ккал (20,6 кДж).

Определение расхода энергии по способу Крога (неполный газовый анализ). Испытуемый вдыхает кислород из мешка метабо-лиметра, выдыхаемый воздух возвращается в тот же мешок, пред­варительно пройдя через поглотитель С0 2 . По показаниям метабо-лиметра определяют расход 0 2 и умножают на калорический эквивалент кислорода в условиях основного обмена: 4,86 ккал (20,36 кДж). Таким образом, метод Дугласа - Холдена предполага­ет расчет расхода энергии по данным полного газового анализа; ме­тод Крога - только по объему потребленного кислорода с исполь­зованием калорического эквивалента кислорода, характерного для условий основного обмена (рис. 10.1).

Изменение интенсивности выработки энергии в организме иг­рает главную роль в процессах терморегуляции.