Закон сохранения механической энергии формулируется следующим образом. Закон сохранения энергии

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы.

Если на тело действует сила и тело под действием этой силы перемещается, то говорят, что сила совершает работу.

Механическая работа – это скалярная величина, равная произведению модуля силы, действующей на тело, на модуль перемещения и на косинус угла между вектором силы и вектором перемещения (или скорости).

Работа является скалярной величиной. Она может быть как положительна (0° ≤ α < 90°), так и отрицательна (90° < α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю.

В системе СИ работа измеряется в джоулях (Дж) . Джоуль равен работе, совершаемой силой в 1 Н на перемещении 1 м в направлении действия силы.

Работа силы, совершаемая в единицу времени, называется мощностью .

Мощность N физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа :

N=A/t

В Международной системе (СИ) единица мощности называется ватт (Вт) . Ватт равен мощности силы, совершающей работу в 1 Дж за время 1 с.

Внесистемная единица мощности 1 л.с.=735 Вт

Связь между мощностью и скоростью при равномерном движении :

N=A/t так как A=FScosα тогда N=(FScosα)/t, но S/t = v следовательно

N= F v cos α

В технике используются единицы работы и мощности:

1 Вт·с = 1 Дж; 1Вт·ч = 3,6·10 3 Дж; 1кВт·ч = 3,6·10 6 Дж

Если тело способно совершить работу, то говорят, что оно обладает энергией.

Механическая энергия тела – это скалярная величина, равная максимальной работе, которая может быть совершена в данных условиях.

Обозначается Е Единица энергии в СИ

Механическая работа есть мера изменения энергии в различных процессах А = ΔЕ.

Различают два вида механической энергии – кинетическая Ек и потенциальная Е p энергия.

Полная механическая энергия тела равна сумме его кинетической и потенциальной энергий

Е = Ек + Е p

Кинетическая энергия – это энергия тела, обусловленная его движением.

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела :

Кинетическая энергия – это энергия движения. Кинетическая энергия тела массой m , движущегося со скоростью равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

Если тело движется со скоростью , то для его полной остановки необходимо совершить работу

Наряду с кинетической энергией или энергией движения в физике важную роль играет понятиепотенциальной энергии или энергии взаимодействия тел .

Потенциальная энергия энергия тела, обусловленная взаимным расположением взаимодействующих между собой тел или частей одного тела.

Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения тела и определяется только начальным и конечным положениями . Такие силы называются консервативными . Работа консервативных сил на замкнутой траектории равна нулю .

Свойством консервативности обладают сила тяжести и сила упругости . Для этих сил можно ввести понятие потенциальной энергии.

П отенциальная энергия тела в поле силы тяжести (потенциальная энергия тела, поднятого над землёй):

Ep = mgh

Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень.

Понятие потенциальной энергии можно ввести и для упругой силы . Эта сила также обладает свойством консервативности. Растягивая (или сжимая) пружину, мы можем делать это различными способами.

Можно просто удлинить пружину на величину x, или сначала удлинить ее на 2x, а затем уменьшить удлинение до значения x и т. д. Во всех этих случаях упругая сила совершает одну и ту же работу, которая зависит только от удлинения пружины x в конечном состоянии, если первоначально пружина была недеформирована. Эта работа равна работе внешней силы A, взятой с противоположным знаком:

где k – жесткость пружины.

Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, то есть сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Потенциальной энергией пружины (или любого упруго деформированного тела) называют величину

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.

Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x1, тогда при переходе в новое состояние с удлинением x2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком:

Потенциальная энергия при упругой деформации – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Если тела, составляющие замкнутую механическую систему , взаимодействуют между собой только силами тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком:

A = –(Ep2 – Ep1).

По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел:

Следовательно Ek2 – Ek1 = –(Ep2 – Ep1) или Ek1 + Ep1 = Ek2 + Ep2.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах. Он является следствием законов Ньютона.

Сумму E = Ek + Ep называют полной механической энергией .

Полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую энергию, и наоборот, или переход энергии от одного тела к другому.

Е = Ек + Е p = const

Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах . Он является следствием законов Ньютона. Сумму E = E k + E p называют полной механической энергией . Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

Билет 11

Выражение кинетического момента тела с одной неподвижной точкой через матрицу моментов инерции тела.

Имеет твердое тело, одна из точек которого закреплена. Движение тела рассматривается относительно некоторой системы координат О xyz .

Кинетически момент относительно неподвижной точки:

Где r k - радиус-вектор какой-либо точки тела. m k -масса точки. V k - скорость этой точки относительно выбранной системы отсчета.

формула эйлера

В проекциях на оси:

Для проекции кинетического момента на ось O x с учетом(2’) имеем:

Суммы в (1’) представляют собой соответственно осевой и центробежные моменты инерции. Получаем:

По (3)вычисляются проекции на оси координат кинетического момента тела относительно его закрепленной точки. Кинетический момент по проекциям определяется по формуле:

Для неподвижных осей осевые и центробежные моменты инерции изменяются при вращении тела и, следовательно, зависят от времени вследствие изменения положения тела относительно этих осей.

Если применить тензор инерции:

И учесть правило умножения тензора на вектор столбец омега, то можно кратко выразить формулой: .

Упрощаем формулу (3)для проекций:

В этом случае проекции кинетического момента вычисляются так же, как и в случае, если бы каждая из главных осей инерции была неподвижной осью вращения тела. Главные оси инерции для неподвижной точки О обычно подвижные оси, скрепленные с самим вращающимся телом. Только такие оси могут быть главными в течении всего времени вращения тела. Другие подвижные или неподвижные оси могут быть главными только в отдельные моменты времени.

Кинетическая энергия поступательного движения

Кинетической энергией системы называется скалярная величина Т, равная арифметиче­ской сумме кинетических энергий всех точек системы

Кинетическая энергия является характеристикой и поступатель­ного и вращательного движения системы, поэтому теоремой об изме­нении кинетической энергии особенно часто пользуются при решении задач.

Если система состоит из нескольких тел, то ее кинетическая энергия равна, очевидно, сумме кинетических энергий этих тел:

Кинетическая энергия – скалярная и всегда положительная величина.

Найдем формулы для вычисления кинетической энергии тела в разных случаях движения.

1. Поступательное движение . В этом случае все точки тела движутся с одинаковыми скоростями, равными скорости дви­жения центра масс. То есть, для любой точки

Таким образом, кинетическая энергия тела при поступатель­ном движении равна половине произведения массы тела на квад­рат скорости центра масс. От направления движения значение Т не зависит.

Билет 12

Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси

Дифференциальное уравнение имеет вид:

, (2.6)

где – угловое ускорение тела.

Уравнение (2.6) получается из уравнения (2.4) теоремы путём подстановки в него формулы (2.3).

(2.3)

(2.4)

Интегрируя уравнение (2.6), можно определить закон вращения тела. Методика решения подобных задач:

– изображаем тело в произвольном положении; показываем внешние силы, действующие на тело; показываем ось , направленную по оси вращения тела в ту сторону, откуда вращение видно происходящим против часовой стрелки;

– находим сумму моментов внешних сил относительно оси ;

– вычисляем, если не задан, момент инерции тела ;

– составляем уравнение (2.6), интегрируя это уравнение, определяем закон вращения тела.

ПОТЕНЦИАЛЬНЫЕ СИЛЫ

Поле сил, остающееся постоянным во времени, называется стационарным. В стационарном силовом поле сила, действующая на частицу, зависит только от ее положения. Работа, которую совершают силы поля при перемещении частицы из точки 1 в точку 2, зависит, вообще говоря, от траектории, по которой перемещается частица из начального положения в конечное. Вместе с тем, имеются стационарные силовые поля, в которых работа, совершаемая над частицами силами поля, не зависит от формы траектории между точками 1 и 2. Силы, обладающие таким свойством, называются потенциальными или консервативными, а соответствующее поле сил – потенциальным полем. Примером потенциальных сил являются упругие силы, сила тяжести.

билет 13 1.Плоскопараллельным (или плоским) называется такое движение твердого тела, при, котором все его точки перемещаются параллельно некоторой фиксированной плоскости П. Рассмотрим сечение тела какой-нибудь плоскостью OXY, параллельной неподвижной плоскости П (рис.1).При плоскопараллельном движении все точки тела, лежащие на прямой , перпендикулярной к сечению, т.е. к плоскости П, движутся тождественно. Поэтому для изучения движения всего тела достаточно изучить, как движется сечение тела в плоскости OXY. В дальнейшем будем плоскость OXY совмещать с плоскостью рисунка, а вместо всего тела изображать только его сечение. Положение сечения в плоскости OXY определяется положением какого-нибудь проведенного в этом сечении отрезка АВ (рис.2). Положение отрезка АВ можно определить, зная координаты точки А и угол , который от-резок АВ образует с осью x. Точку А, выбранную для определения положения сечения, называют полюсом. При движении тела величины и будут меняться: (1.74) Уравнения определяющие закон происходящего движения, называются уравнениями плоскопараллельного движения твердого тела. 2.Главный момент всех внутренних сил системы(относительно всякого выбранного центра) в любой момент времени равен нулю (M O i =0).M-вектор. или . Уравновешенными внутренние силы будут тогда, когда рассматриваемая система представляет собою абсолютно твердое тело. Действительно, если взять произвольный центр О , то из рис. видно, что . билет 14 1.Кинетической энергией системы называют сумму кинетических энергий всех материальных точек, входящих в систему; при поступательном движении: E=mV 2 /2; при вращении вокруг неподвижной оси : E=I Z v 2 /2; при плоскопараллельном движении : E=mV C 2 /2-I Z v 2 /2, где V C -скорость центра масс,v-угловая скорость. Кинетическая энергия механической системы есть энергия движения центра масс плюс энергия движения относительно центра масс: E=E 0 +E R , где E-полная кинетическая энергия системы, E 0- кинетическая энергия движения центра масс, E R -относительная кинетическая энергия системы. Иными словами, полная кинетическая энергия тела или системы тел в сложном движении равна сумме энергии системы в поступательном движении и энергии системы в её сферическом движении относительно центра масс. 2.Степени свободы - это совокупность независимых координат перемещения и/или вращения, полностью определяющая положение системы или тела (а вместе с их производными по времени - соответствующими скоростями - полностью определяющая состояние механической системы или тела - то есть их положение и движение). Обобщенными координатами (о.к.) системы называют такие величины, которые обобщают несколько независимых декартовых координат в углы, линейные расстояния, площади. Удобство состоит в том, что о.к. можно выбирать с учетом наложенных связей, т.е. сообразуясь с характером движения, допускаемого для системы всей совокупностью наложенных связей.

Билет

1) Для внутренних сил механической системы имеет место свойство: главный вектор и главный момент внутренних сил механической системы равны нулю.

.

Это следует из того, что внутренние силы есть силы взаимодействия между точками системы, которые попарно равны и направлены в противоположные стороны.

2) Если все силы системы потенциальны, то обобщенные силы системы выражаются через потенциальную энергию системы как Q j = -дП / дq j , а уравнения Лагранжа второго рода запишутся в виде

Так как потенциальная энергия не зависит от обобщенных скоростей, то. Введем в рассмотрение функцию

Билет 16.

1. Tеорема об изменении кинетической энергии механической системы в дифференциальной форме

Изменение кинетической энергии механической системы на некотором ее перемещении равно сумме работ внешних и внутренних сил, приложенных к точкам системы, на том же перемещении.

2. Удерживающие и стационарные связи

Если функция зависит явно от времени, то говорят, что связь - нестационарная или реономная ; если же эта функция не зависит явно от времени, то говорят, что эта связь -стационарная или склерономная .

Если связь задаётся равенством, то говорят, что такая связь - удерживающая или двусторонняя :

Билет 17

1 Tеорема об изменении кинетической энергии механической системы

Кинетической энергией системы называют сумму кинетических энергий всех тел, входящих в систему. Для определённой таким образом величины справедливо утверждение:

Изменение кинетической энергии системы равно работе всех внутренних и внешних сил, действующих на тела системы.

2 Голономные связи

Голоно́мная связь - механическая связь, налагающая ограничения только на положения (или перемещения) точек и тел системы.

Математически выражается в виде равенства:

Билет 18

1.Принцип Эйлера-Даламбера для материальной точки

Согласно данному принципу, для каждой i-той точки системы верно равенство , где - действующая на эту точку активная сила, - реакция наложенной на точку связи, - сила инерции, численно равная произведению массы точки на её ускорение и направленная противоположно этому ускорению ()

2 кинетическая энергия тела при плоском движении

Билет 19

Уравнения кинетостатики.

Кинетостатика - раздел механики, в котором рассматриваются способы решения динамических задач с помощью аналитических или графических методов статики. В основе К. лежит Д"Аламбера принцип, согласно которому уравнения движения тел можно составлять в форме уравнений статики, если к фактически действующим на тело силам и реакциям связей присоединить силы инерции. Методы К. находят применение при решении ряда динамических задач, особенно в динамике машин и механизмов.

уравнения кинетостатики для материальной точки :

где F, R, Ф - главные векторы активных сил, реакций связей и сил инерции;

Fz, Rz, Ф z - главные моменты активных сил, реакций связей и сил инерции относительно точки О 1

Данный видеоурок предназначен для самостоятельного ознакомления с темой «Закон сохранения механической энергии». Вначале дадим определение полной энергии и замкнутой системы. Затем сформулируем Закон сохранения механической энергии и рассмотрим, в каких областях физики можно его применять. Также мы дадим определение работы и научимся её определять, рассмотрев связанные с ней формулы.

Темой урока является один из фундаментальных законов природы - закон сохранения механической энергии .

Мы ранее говорили о потенциальной и кинетической энергии, а также о том, что тело может обладать вместе и потенциальной, и кинетической энергией. Прежде чем говорить о законе сохранения механической энергии вспомним, что такое полная энергия. Полной механической энергией называют сумму потенциальной и кинетической энергий тела.

Также вспомним, что называют замкнутой системой. Замкнутая система - это такая система, в которой находится строго определенное количество взаимодействующих между собой тел и никакие другие тела извне на эту систему не действуют.

Когда мы определились с понятием полной энергии и замкнутой системы, можно говорить о законе сохранения механической энергии. Итак, полная механическая энергия в замкнутой системе тел, взаимодействующих друг с другом посредством сил тяготения или сил упругости (консервативных сил), остается неизменной при любом движении этих тел.

Мы уже изучали закон сохранения импульса (ЗСИ):

Очень часто случается так, что поставленные задачи можно решить только с помощью законов сохранения энергии и импульса.

Рассмотреть сохранение энергии удобно на примере свободного падения тела с некоторой высоты. Если некоторое тело находится в состоянии покоя на некоторой высоте относительно земли, то это тело обладает потенциальной энергией. Как только тело начинает свое движение, высота тела уменьшается, уменьшается и потенциальная энергия. При этом начинает нарастать скорость, появляется энергия кинетическая. Когда тело приблизилось к земле, то высота тела равна 0, потенциальная энергия тоже равна 0, а максимальной будет являться кинетическая энергия тела. Вот здесь и просматривается превращение потенциальной энергии в кинетическую (рис. 1). То же самое можно сказать о движении тела наоборот, снизу вверх, когда тело бросают вертикально вверх.

Рис. 1. Свободное падение тела с некоторой высоты

Дополнительная задача 1. «О падении тела с некоторой высоты»

Задача 1

Условие

Тело находится на высоте от поверхности Земли и начинает свободно падать. Определите скорость тела в момент соприкосновения с землей.

Решение 1:

Начальная скорость тела . Нужно найти .

Рассмотрим закон сохранения энергии.

Рис. 2. Движение тела (задача 1)

В верхней точке тело обладает только потенциальной энергией: . Когда тело приблизится к земле, то высота тела над землей будет равна 0, а это означает, что потенциальная энергия у тела исчезла, она превратилась в кинетическую:

Согласно закону сохранения энергии можем записать:

Масса тела сокращается. Преобразуя указанное уравнение, получаем: .

Окончательный ответ будет: . Если подставить все значение, то получим:.

Ответ: .

Пример оформления решения задачи:

Рис. 3. Пример оформления решения задачи № 1

Данную задачу можно решить еще одним способом, как движение по вертикали с ускорением свободного падения.

Решение 2 :

Запишем уравнение движения тела в проекции на ось :

Когда тело приблизится к поверхности Земли, его координата будет равна 0:

Перед ускорением свободного падения стоит знак «-», поскольку оно направлено против выбранной оси .

Подставив известные величины, получаем, что тело падало на протяжении времени . Теперь запишем уравнение для скорости:

Полагая ускорение свободного падения равным получаем:

Знак минус означает, что тело движется против направления выбранной оси.

Ответ: .

Пример оформления решения задачи № 1 вторым способом.

Рис. 4. Пример оформления решения задачи № 1 (способ 2)

Также для решения данной задачи можно было воспользоваться формулой, которая не зависит от времени:

Конечно, нужно отметить, что данный пример мы рассмотрели с учетом отсутствия сил трения, которые в реальности действуют в любой системе. Обратимся к формулам и посмотрим, как записывается закон сохранения механической энергии:

Дополнительная задача 2

Тело свободно падает с высоты . Определите, на какой высоте кинетическая энергия равна трети потенциальной ().

Рис. 5. Иллюстрация к задаче № 2

Решение:

Когда тело находится на высоте , оно обладает потенциальной энергией, и только потенциальной. Эта энергия определяется формулой: . Это и будет полная энергия тела.

Когда тело начинает двигаться вниз, уменьшается потенциальная энергия, но вместе с тем нарастает кинетическая. На высоте, которую нужно определить, у тела уже будет некоторая скорость V. Для точки, соответствующей высоте h, кинетическая энергия имеет вид:

Потенциальная энергия на этой высоте будет обозначена следующим образом: .

По закону сохранения энергии, у нас полная энергия сохраняется. Эта энергия остается величиной постоянной. Для точки мы можем записать следующее соотношение: (по З.С.Э.).

Вспоминая, что кинетическая энергия по условию задачи составляет , можем записать следующее: .

Обратите внимание: масса и ускорение свободного падения сокращается, после несложных преобразований мы получаем, что высота, на которой такое соотношение выполняется, составляет .

Ответ:

Пример оформления задачи 2.

Рис. 6. Оформление решения задачи № 2

Представьте себе, что тело в некоторой системе отсчета обладает кинетической и потенциальной энергией. Если система замкнутая, то при каком-либо изменении произошло перераспределение, превращение одного вида энергии в другой, но полная энергия остается по своему значению той же самой (рис. 7).

Рис. 7. Закон сохранения энергии

Представьте себе ситуацию, когда по горизонтальной дороге движется автомобиль. Водитель выключает мотор и продолжает движение уже с выключенным мотором. Что в этом случае происходит (рис. 8)?

Рис. 8. Движение автомобиля

В данном случае автомобиль обладает кинетической энергией. Но вы прекрасно знаете, что с течением времени автомобиль остановится. Куда девалась в этом случае энергия? Ведь потенциальная энергия тела в данном случае тоже не изменилась, она была какой-то постоянной величиной относительно Земли. Как произошло изменение энергии? В данном случае энергия пошла на преодоление сил трения. Если в системе встречается трение, то оно также влияет на энергию этой системы. Посмотрим, как записывается в данном случае изменение энергии.

Изменяется энергия, и это изменение энергии определяется работой против силы трения. Определить работу силы трения мы можем с помощью формулы, которая известна из 7 класса (сила и перемещение направлены противоположно):

Итак, когда мы говорим об энергии и работе, то должны понимать, что каждый раз мы должны учитывать и то, что часть энергии расходуется на преодоление сил трения. Совершается работа по преодолению сил трения. Работа является величиной, которая характеризует изменение энергии тела.

В заключение урока хотелось бы сказать, что работа и энергия по сути своей связанные величины через действующие силы.

Дополнительная задача 3

Два тела - брусок массой и пластилиновый шарик массой - движутся навстречу друг другу с одинаковыми скоростями (). После столкновения пластилиновый шарик прилип к бруску, два тела продолжают движение вместе. Определить, какая часть механической энергии превратилась во внутреннюю энергию этих тел, с учетом того что масса бруска в 3 раза больше массы пластилинового шарика ().

Решение:

Изменение внутренней энергии можно обозначить . Как вы знаете, существует несколько видов энергии. Кроме механической, существует еще и тепловая, внутренняя энергия.

Теория: Энергия никуда не исчезает, она из одного вида превращается в другой, и из ниоткуда она не возникает.
Энергия способна переходить в механическую работу или в .
Полная энергия замкнутой системы величина постоянная: E=E к +E п

Например: тело массой 2 кг поднимем на высоту 1 метр, на этой высоте потенциальная тела E п =mgh=20 Дж, по мере падения тела, высота уменьшается, потенциальная энергия так же уменьшается. При этом скорость тела начинает увеличиваться, в следствии чего и кинетическая энергия увеличивается. Получается, что энергия из потенциальной переходит в кинетическую. В момент касания поверхности, потенциальная энергия равна нулю, кинетическая максимальна и равна так же как в начале 20 Дж. Если тело упруго отразится, то по мере поднятия на высоту, кинетичесская энергия будет уменьшаться, и переходить в потенциальную.

Задания:  Мяч бросают вертикально вверх с поверхности Земли. Сопротивление воздуха пренебрежимо мало. При увеличении начальной скорости мяча в 2 раза высота подъёма мяча
  1) увеличится в √ 2 раза
 2) увеличится в 2 раза
  3) увеличится в 4 раза
 4) не изменится

Задание: Пуля, движущаяся со скоростью 600 м/с, пробила доску толщиной 1,5 см и на выходе из доски имела скорость 300 м/с. Определите массу пули, если средняя сила сопротивления, воздействующая на пулю в доске, равна 81 кН.

Тело массой m, брошенное с Земли вертикально вверх с начальной скоростью υ 0 , поднялось на высоту h 0 . Сопротивление воздуха пренебрежимо мало. Полная механическая энергия тела на некоторой промежуточной высоте h равна

Решение: Поскольку сопротивление воздуха пренебрежимо мало, следовательно полная энергия системы не изменяется. Полная механическая энергия тела на некоторой промежуточной высоте h равна энергии на максимальной высоте mgh 0 .
Ответ: 2
Задание ОГЭ по физике (фипи): Шарик движется вниз по наклонному желобу без трения. Какое из следующих утверждений об энергии шарика верно при таком движении?
1) Кинетическая энергия шарика увеличивается, его полная механическая энергия не изменяется.
2) Потенциальная энергия шарика увеличивается, его полная механическая энергия не изменяется.
3) И кинетическая энергия, и полная механическая энергия шарика увеличиваются.
4) И потенциальная энергия, и полная механическая энергия шарика уменьшаются.
Решение: При движении вниз, скорость шарика увеличивается. Следовательно кинетическая энергия увеличивается. Так как трения нет, и систему можно считать замкнутой, то полная механическая энергия не изменяется.
Ответ: 1
Задание ОГЭ по физике (фипи): Товарный вагон, движущийся по горизонтальному пути с небольшой скоростью, сталкивается с другим вагоном и останавливается. При этом пружина буфера сжимается. Какое из перечисленных ниже преобразований энергии происходит в этом процессе?
1) кинетическая энергия вагона преобразуется в потенциальную энергию пружины
2) кинетическая энергия вагона преобразуется в его потенциальную энергию
3) потенциальная энергия пружины преобразуется в её кинетическую энергию
4) внутренняя энергия пружины преобразуется в кинетическую энергию вагона
Решение: Сначала вагон двигался, значит у него была кинетическая энергия. При сталкновении пружина сжалась, т.е. кинетическая энергия вагона преобразуется в потенциальную энергию пружины

Представьте себе ревущий водопад. Грозно шумят мощные потоки воды, искрятся на солнце капли, белеет пена. Красиво, не правда ли?

Превращение одного вида механической энергии в другой

А как вы считаете, обладает ли эта несущаяся вниз стихия энергией? Никто не будет спорить с тем, что да. А вот какой энергией будет обладать вода - кинетической или потенциальной? И вот тут оказывается, что ни первый, ни второй варианты ответа не будут верны. А верным окажется ответ - падающая вниз вода обладает обоими видами энергии. То есть, одно и то же тело может обладать обоими видами энергии. Их сумму называют полной механической энергией тела: E=E_к+E_п. Более того, вода в данном случае не только обладает обоими видами энергии, но их величина меняется по ходу движения воды. Когда наша вода находится в верхней точке водопада и еще не начала падать, то она обладает максимальным значением потенциальной энергии. Кинетическая же энергия в данном случае равна нулю. Когда вода начинает падать вниз, у нее появляется кинетическая энергия движения. По ходу движения вниз потенциальная энергия уменьшается, так как уменьшается высота, а кинетическая, наоборот, возрастает, так как увеличивается скорость падения воды. То есть, происходит превращение одного вида энергии в другой. При этом полная механическая энергия сохраняется. В этом и заключается закон сохранения и превращения энергии.

Закон сохранения полной механической энергии

Закон сохранения полной механической энергии гласит: полная механическая энергия тела, на которое не действуют силы трения и сопротивления, в процессе его движения остается неизменной. Когда же присутствует, например, трение скольжения, тело вынуждено тратить часть энергии на его преодоление, и энергия, естественно будет уменьшаться. Поэтому в реальности, при передаче энергии практически всегда существуют потери, которые приходится учитывать.

Закон сохранения энергии можно представить в виде формулы. Если мы обозначим начальную и конечную энергию тела как E_1 и E_2, то закон сохранения энергии можно выразить так: E_1=E_2. В начальный момент времени тело имело скорость v_1 и высоту h_1:

E_1=(mv_1^2)/2+mgh_1.

В конечный момент времени со скоростью v_2 на высоте h_2 энергия

E_2=(mv_2^2)/2+mgh_2.

В соответствии с законом сохранения энергии:

(mv_1^2)/2+mgh_1=(mv_2^2)/2+mgh_2.

Если мы знаем начальные значения скорости и энергии, то мы можем высчитать конечную скорость на высоте h, или, наоборот, найти высоту, на которой тело будет иметь заданную скорость. При этом масса тела не имеет значения, так как она сократится из уравнения.

Энергия также может передаваться от одного тела к другому. Так, например, при выпуске стрелы из лука потенциальная энергия тетивы, превращается в кинетическую энергию летящей стрелы.