Типы ядерных превращений, альфа и бета-распад. Элементы физики атомного ядра и элементарных частиц

Альфа-распад
Alpha decay

Альфа-распад (или α-распад) – самопроизвольное испускание атомными ядрами альфа-частиц (ядер атома гелия). Поскольку α-частица представляет собой связанное состояние двух протонов и двух нейтронов (т.е. ядро гелия), то в результате α-распада конечное ядро содержит на 2 протона и 2 нейтрона меньше, чем начальное. Например, α-распад ядра плутония, содержащего 239 нуклонов, в числе которых 94 протона, записывается следующим образом: 239 Pu→ 235 U + α . Конечным ядром после распада является ядро урана, содержащее 235 нуклонов, из которых 92 протона. Альфа-распад становится энергетически возможным для ядер, содержащих не менее 60 протонов.
Для того чтобы происходил α-распад, необходимо, чтобы масса исходного ядра M(A,Z) была больше суммы масс конечного ядра M(A-4, Z-2) и α -частицы m α:

M(A,Z) > M(A-4, Z-2) + m α .

Энергия α-распада

Q α = c 2 .

Энергия, освобождающаяся при α-распаде, обычно заключена в интервале
2–9 МэВ (1 МэВ = 1.6 . 10 -13 Дж) и основная её часть (≈98%) уносится α-частицей в виде её кинетической энергии. Оставшиеся 2% - это кинетическая энергия конечного ядра. Периоды полураспада альфа-излучателей изменяются в очень широких пределах: от 5 . 10 -8 сек до 8 . 10 18 лет. Столь широкий разброс периодов полураспада, а также огромные значения этих периодов для многих альфа-радиоактивных ядер объясняется тем, что α-частица не может “мгновенно” покинуть ядро, несмотря на то, что это энергетически выгодно. Для того чтобы покинуть ядро, α-частица должна преодолеть потенциальный барьер - область на границе ядра, образующуюся за счёт потенциальной энергии электростатического отталкивания α-частицы и конечного ядра и сил притяжения между нуклонами. С точки зрения классической физики α- частица не может преодолеть потенциальный барьер, так как не имеет необходимой для этого кинетической энергии. Однако квантовая механика допускает такую возможность - α-частица имеет определенную вероятность пройти сквозь потенциальный барьер и покинуть ядро. Это квантовомеханическое явление называют “туннельным эффектом” или “туннелированием”. Чем выше барьер, тем меньше вероятность туннелирования, а период полураспада больше. Огромный диапазон периодов полураспада α-излучателей объясняется различным сочетанием кинетических энергий α-частиц и высот потенциальных барьеров. Если бы барьера не существовало, то альфа- частица за время ≈10 -21 – 10 -23 с покинула бы ядро.
Простейшая модель α-распада была предложена в 1928 году Г. Гамовым и независимо от него Г. Герни и Э. Кондоном . В этой модели предполагалось, что α-частица постоянно существует в ядре. Пока α-частица находится в ядре на нее действуют ядерные силы притяжения. Радиус их действия – R. Ядерный потенциал – V 0 . За пределами ядерной поверхности при r > R потенциал является кулоновским

V(r) = 2Ze 2 /r.

Упрощенная схема совместного действия ядерного потенциала притяжения и кулоновского потенциала отталкивания показана на рисунке. Для того, чтобы выйти за пределы ядра α-частица должна пройти сквозь потенциальный барьер, заключенный в области от R до R c . Вероятность D альфа-распада в основном определяется вероятностью прохождения α-частиц через кулоновский потенциальный барьер

В рамках этой модели удалось объяснить сильную зависимость вероятности α-распада от энергии -частицы.
Таким образом, вылет α-частиц из радиоактивных ядер обусловлен туннельным эффектом. Аналогичные явления – вылет электронов из металла или проникновение электронов в зону проводимости. Во всех этих случаях проявляются волновые свойства частиц.
Закон Гейгера-Неттола, установленный экспериментально, показывает зависимость между периодом полураспада T 1/2 α-радиоактивных ядер и энергией Е α вылетающей α-частицы

В соответствии с видами радиоактивных излучений существуют несколько видов радиоактивного распада (типов радиоактивных превращений). Радиоактивному превращению подвергаются элементы, в ядрах которых слишком много протонов или нейтронов. Рассмотрим виды радиоактивного распада.


1. Альфа-распад характерен для естественных радиоактивных элементов с большим порядковым номером (т.е. с малыми энергиями связи). Известно около 160 альфа-активных видов ядер, в основном порядковый номер их более 82 (Z > 82). Альфа-распад сопровождается испусканием из ядра неустойчивого элемента альфа-частицы, которая представляет собой ядро атома гелия Не (в его составе 2 протона и 2 нейтрона). Заряд ядра уменьшается на 2, массовое число - на 4.


ZАХ → Z-2 А-4 У + 2 4Не; 92 238U →24 Не + 90 234Th;


88 226Ra→2 4He + 86 222Ra + γ изл.


Альфа - распад подвергается более 10% радиоактивных изотопов.


2. Бета-распад. Ряд естественных и искусственных радиоактивных изотопов претерпевают распад с испусканием электронов или позитронов:


а) Электронный бета-распад. характерен как для естественных, так и для искусственных радионуклидов, которые имеют излишек нейтронов (т.е. в основном для тяжелых радиоактивных изотопов). Электронному бета-распаду подвергается около 46% всех радиоактивных изотопов. При этом один из нейтронов превращается в , а ядро испускает и антинейтрино. Заряд ядра и соответственно атомный номер элемента при этом увеличивается на единицу, а массовое число остается без изменения.


АZ Х → АZ+1 У + е- + v-; 24194Pu→24195Am + e- + v-; 6429Cu → 6430Zn + e- + v-; 4019K → 4020Ca + e- + v-.


При испускании β-частиц ядра атомов могут находиться в возбужденном состоянии, когда в дочернем ядре обнаруживается избыток энергии, которая не захвачена корпускулярными частицами. Этот излишек энергии высвечивается в виде гамма-квантов.


13785Cs → 13756 Ва + е -+ v- + γ изл.;


б) позитронный бета-распад. Наблюдается у некоторых искусственных радиоактивных изотопов, у которых в ядре имеется излишек протонов. Он характерен для 11% радиоактивных изотопов, находящихся в первой половине таблицы Д.И.Менделеева (Z<45). При позитронном бета-распаде один из протонов превращается в , заряд ядра и соответственно атомный номер уменьшается на единицу, а массовое число остается без изменений. Ядро испускает позитрон и нейтрино.


AZX → AZ-1У + е+ + v+; 3015P → 3014Si + e+ + v+; 6428Ni + e+ + v+.


Позитрон, вылетев из ядра, срывает с оболочки атома «лишний» или взаимодействует со свободным электроном, образуя пару «позитрон-электрон», которая мгновенно превращается в два гамма-кванта с энергией, эквивалентной массе частиц (е и е). Процесс превращения пары «позитрон-электрон» в два гамма-кванта получил название аннигиляции (уничтожения), а возникающее электромагнитное излучение - аннигиляционного. В данном случае происходит превращение одной формы материи (частиц вещества) в другую - гамма-фотоны;


в) электронный захват. Это такой вид радиоактивного превращения, когда ядро атома захватывает электрон из ближайшего к ядру энергетического К-уровня (электронный К-захват) или реже в 100 раз - из L уровня. В результате один из протонов ядра нейтрализуется электроном, превращаясь в . Порядковый номер нового ядра становится на единицу меньше, а массовое число не изменяется. Ядро испускает антинейтрино. Освободившееся место, которое занимал в К или L-уровне захваченный , заполняется электроном из более удаленных от ядра энергетических уровней. Избыток энергии, освободившийся при таком переходе, испускается атомом в виде характеристического рентгеновского излучения.


AZХ + е- → AZ-1 У + v- + рентгеновское излучение;


4019К + е- → Аr + v-+ рентгеновское излучение;


6429Сu + е- → 6428 Ni+v- + рентгеновское излучение.


Электронный К-захват характерен для 25% всех радиоактивных ядер, но в основном для искусственных радиоактивных изотопов, расположенных в другой половине таблицы Д.И. Менделеева и имеющих излишек протонов (Z = 45 - 105). Только три естественных элемента претерпевают К-захват: калий-40, лантан-139, лютеций-176 (4019K, 15957La, 17671Lu).


Некоторые ядра могут распадаться двумя или тремя способами: путем альфа- и бета-распада и К-захвата.


Калий-40 подвергается, как уже отмечалось, электронному распаду - 88%, и К-захвату - 12%. Медь-64 (6428Сu) превращается в никель (позитронный распад - 19%, К-захват - 42%; (электронный распад - 39%).


3. Испускание γ-излучения не является видом радиоактивного распада (при этом не происходит превращение элементов), а представляет собой поток электромагнитных волн, возникающих при альфа- и бета-распаде ядер атомов (как естественных, так и искусственных радиоактивных изотопов), когда в дочернем ядре оказывается избыток энергии, не захваченный корпускулярным излучением (альфа- и бета- частицей). Этот избыток мгновенно высвечивается в виде гамма-квантов.


13153I → 13154Xe + e- +v- +2γ кванта; 22688Ra → 42He + 22286Rn + γ квант.


4. - испускание протона из ядра в основном состоянии. Этот процесс может наблюдаться у искусственно полученных ядер с большим дефицитом нейтронов:


лютеций - 151 (15171Lu) - в нем на 24 нейтрона меньше, чем в стабильном изотопе 17671Lu.

АЛЬФА-РАСПАД (α-распад), испускание атомным ядром альфа-частицы (ядра 4 Не). Альфа-распад из основного (невозбуждённого) состояния ядра называют также альфа-радиоактивностью.

Термин «α-лучи» был введён вскоре после открытия А. А. Беккерелем в 1896 году радиоактивности для обозначения наименее проникающего вида излучения, испускаемого радиоактивными веществами. В 1909 году Э. Резерфорд и Т. Ройдс доказали, что α-частицы являются дважды ионизованными атомами гелия.

При альфа-распаде массовое число А материнского ядра уменьшается на 4 единицы, а заряд (число протонов) Z - на 2:

A Z → А-4 (Z—2) + 4 2 Не + Q. (1)

Энергия Q, выделяющаяся при альфа-распаде, определяется разностью масс материнского ядра и обоих продуктов распада. Альфа-распад энергетически возможен, если величина Q положительна. Это условие выполняется почти для всех ядер с А > 150. Наблюдаемые времена жизни альфа-радиоактивных ядер лежат в пределах от 10 17 лет (204 Pb) до 3·10 -7 сек (212 Ро). Однако во многих случаях времена жизни ядер (периоды полураспада), для которых Q > 0, оказываются слишком большими и альфа-радиоактивность наблюдать не удаётся. Кинетическая энергия α-частиц изменяется от 1,83 МэВ (144 Nd) до 11,65 МэВ (изомер 212 Ро).

Известно свыше 300 α-радиоактивных нуклидов, полученных в основном искусственно. Подавляющее большинство их относится к элементам, расположенным в периодической системе за свинцом (Z>82). Имеется группа α-радиоактивных нуклидов в области лантаноидов (А= 140-160), а также небольшая группа между лантаноидами и свинцом. В ядерных реакциях с тяжёлыми ионами синтезировано несколько короткоживущих альфа-излучающих нуклидов с А = 106-116.

Альфа-спектроскопия . Альфа-частицы, вылетающие из материнских ядер при их распаде, обычно образуют несколько групп с различной энергией. Распределение этих групп по энергиям называется энергетическим спектром, а область экспериментальной физики, занимающаяся изучением спектров α-частиц, — альфа-спектроскопией. Каждая из линий спектра соответствует определённому состоянию (уровню энергии) дочернего ядра. Задачей альфа-спектроскопии является измерение энергии и интенсивности каждой из групп α-частиц, а также времён жизни распадающихся ядер. Эти данные позволяют определять характеристики отдельных уровней дочернего ядра - их энергии возбуждения, спины, чётности, а также вероятности их образования. Полученная спектроскопическая информация оказывается важным, а иногда и единственным источником сведений о структуре как дочернего, так и материнского ядер. В последнее время альфа-спектроскопия стала одним из важнейших методов исследования, используемых при синтезе сверхтяжёлых элементов.

Измерение энергии и интенсивности α-частиц, испускаемых распадающимися ядрами, производят альфа-спектрометрами. Чаще всего используют кремниевые полупроводниковые детекторы различных типов, позволяющие получить энергетическое разрешение до 12 кэВ (для α-частиц с энергией 6 МэВ) при светосиле порядка 0,1%. Более высокое разрешение может быть получено с помощью магнитных спектрометров, имеющих, однако, значительно меньшую светосилу и отличающихся сложной и громоздкой конструкцией.

Периоды полураспада . Одна из особенностей α-радиоактивности состоит в том, что при сравнительно небольшом различии в энергии α-частиц времена жизни материнских ядер различаются на много порядков. Ещё задолго до создания теории α-радиоактивности было установлено эмпирическое соотношение (Гейгера - Неттолла закон), связывающее период полураспада Т 1/2 с энергией распада Q:

Это соотношение лучше всего выполняется для переходов между основным состояниями ядер с чётным числом нейтронов и протонов.

Теория альфа-распада . Простейшая теория альфа-распад предложена Г. Гамовым в 1927 году, она явилась первым приложением только что созданной квантовой механики к описанию ядерных явлений. Эта теория рассматривала движение α-частицы в потенциальной яме с кулоновским барьером (рис.).

Т.к. высота кулоновского барьера у тяжёлых ядер составляет 25-30 МэВ, а энергия альфа-частиц всего лишь 5-10 МэВ, то их вылет из ядра запрещён законами классической механики и может происходить только за счёт квантово-механического туннельного эффекта. Используя упрощённую форму барьера и предполагая, что α-частица находится внутри ядра, можно получить для вероятности альфа-распад выражение, экспоненциально зависящее от энергии α-частицы, т. е. выражение типа (2). Теория Гамова установила, что основным фактором, определяющим вероятность альфа-распада и её зависимость от энергии альфа-частицы и заряда ядра, является кулоновский барьер.

Современный подход к описанию альфа-распада опирается на методы, используемые в теории ядерных реакций. Вероятность альфа-распада λ (величину, обратную периоду полураспада Т 1/2 с точностью до множителя ln 2 = 0,693) можно представить как произведение трёх сомножителей:

Множитель S, называемый спектроскопическим фактором, определяет вероятность того, что α-частица может сформироваться в данном материнском ядре из двух протонов и двух нейтронов. Эта вероятность зависит от внутренней структуры как начального, так и конечного ядер. Фактор Р есть вероятность прохождения кулоновского барьера (его проницаемость) α-частицей заданной энергии. Третий множитель v - это число попыток в единицу времени проникнуть через барьер. Если бы в ядре существовала реальная α-частица, то величина v была бы близка к частоте соударений α-частицы с барьером, то есть единице, делённой на время пролёта альфа-частицей диаметра ядра. Истинная величина v не сильно отличается от такой оценки.

Таким образом, альфа-распад является двухстадийным процессом: вначале α-частица должна возникнуть и появиться на поверхности распадающегося ядра, а затем пройти сквозь потенциальный барьер. Рассмотренная выше теория хорошо воспроизводит экспериментальные данные и позволяет извлекать из них важную информацию о структуре ядра. В частности, было показано, что, хотя α-частицы и не существуют внутри тяжёлых ядер постоянно, в поверхностном слое ядер нуклоны проводят значительную долю времени в составе альфа-частичных группировок, называемых альфа-кластерами.

Альфа-распад возбуждённых ядер . Отдельные случаи распада из нижних возбуждённых состояний тяжёлых ядер, приводящих к испусканию так называемых длиннопробежных α-частиц, известны давно и причисляются к явлению альфа-радиоактивности. Длиннопробежные альфа-частицы получают дополнительную энергию за счёт энергии возбуждения уровня, которая добавляется к энергии распада Q. Как правило, альфа-распад возбуждённых ядер изучается с помощью ядерных реакций, и рассмотренная выше теория полностью применима и к этим процессам. Наблюдаемые времена жизни возбуждённых состояний ядер лежат в диапазоне от 10 -11 с до 10 -22 с. Некоторые распадающиеся состояния лёгких ядер имеют спектроскопические факторы, близкие к единице, что позволяет говорить об альфа-частичной структуре таких ядер (смотри Кластерная модель ядра). Изучение альфа-распада высоковозбуждённых состояний ядер - один из важных методов исследования ядерной структуры при больших энергиях возбуждения.

Лит.: Альфа-, бета- и гамма-спектроскопия. М., 1969. Вып. 2; Соловьев В. Г. Теория атомного ядра: Ядерные модели. М., 1981.

АЛЬФА-РАСПАД

Условие распада. Альфа-распад характерен для тяжелых ядер, у которых а ростом А наблюдается уменьшение энергии связи, приходящейся на 1 нуклон. В этой области массовых чисел уменьшение числа нуклонов в ядре ведет к образованию более прочно связанного ядра. Однако выйгрыш в энергии при уменьшении А на единицу много меньше энергии связи одного нуклона в ядре, поэтому испускание протона или нейтрона, имеющего за пределами ядра энергию связи, равную нулю, невозможно. Испускание же ядра 4 Не оказывается энергетичеки выгодным, так как удельная энергия связи нуклона в этом ядре около 7,1 МэВ. Альфа-распад возможен, если суммарная энергия связи ядра продукта и альфа-частицы больше, чем энергия связи исходного ядра. Или в массовых единицах:

M(A,Z)>M(A-4, Z-2) + M α (3.12)

Увеличение энергии связи нуклонов означает уменьшение энергии покоя как раз на величину выделяющейся при альфа-распаде энергии Е α . Поэтому, если представить альфа-частицу как целое в составе ядра-продукта, то она должна занимать уровень с положительной энергией, равной Е α (рис. 3.5).

Рис. 3.5. Схема энергетического уровня альфа-частицы в тяжелом ядре

Когда альфа-частица покидает ядро, то эта энергия выделяется в свободном виде, как кинетическая энергия продуктов распада: альфа-частицы и нового ядра. Кинетическая энергия распределяется между этими продуктами распада обратно пропорционально их массам и, поскольку, масса альфа-частицы много меньше массы вновь образовавшегося ядра, практически вся энергия распада уносится альфа-частицей.. Таким образом, с большой точностью Е α есть кинетическая энергия альфа-частицы после распада.

Однако, освобождению энергии препядствует кулоновский потенциальный барьер U k (см. рисунок 3.5), вероятность прохождения которого альфа-частицей мала и очень быстро падает при уменьшении Е α . Поэтому соотношение (3.12) не является достаточным условием альфа-распада.

Высота кулоновского барьера для заряженной частицы, проникающей в ядро или вылетающей из ядра, возрастает пропорционально ее заряду. Поэтому кулоновский барьер составляет еще большее препядствие для вылета из тяжелого ядра других прочно связанных легких ядер, таких как 12 С или 16 О . Средняя энергия связи нуклона в этих ядрах еще выше, чем в ядре 4 Не , поэтому в ряде случаев испускание ядра 16 О вместо последовательного вылета четырех альфа-частиц оказалось бы энергетически более выгодным. Однако испускание ядер более тяжелых, чем ядро 4 Не , не наблюдается.

Объяснение распада. Механизм альфа-распада объясняет квантовая механика, т.к в рамках классической физики этот процесс невозможен. Только частица, обладающая волновыми свойствами, может оказаться за пределами потенциальной ямы при E α . Более того, оказывается, что только потенциальный барьер бесконечно большой ширины с вероятностью равной единице, ограничивает пребывание частицы в пределах потенциальной ямы. Если же ширина барьера конечна, то вероятность перехода за пределы потенциального барьера принципиально всегда отлична от нуля. Правда эта вероятность быстро снижается с ростом ширины и высоты барьера. Аппарат квантовой механике приводит к следующему выражению для прозрачности барьера или вероятности ω оказаться частице за пределами потенциального барьера при столкновении с его стенкой:

(3.13)

Если представить альфа-частицу внутри сферической потенциальной ямы радиусом R , движущуюся со скоростью v α , то частота ударов о стенки ямы составит v α /R , и тогда вероятность вылета альфа-частицы из ядра на единицу времени, или постоянная распада, будет равна произведению числа попыток в единицу времени на вероятность прохождения барьера при одном столкновении со стенкой:

, (3.14)

где - некоторый неопределенный коэффициент, поскольку были приняты положения, далекие от истины: альфа-частица не движется свободно в ядре, да и вообще в саставе ядер нет альфа-частиц. Она образуется из четырех нуклонов в момент альфа-распада. Величина имеет смысл вероятности образования в ядре альфа-частицы, частота столкновений которой со стенками потенциальной ямы равна v α /R .

Сравнение с опытом. На основании зависимости (3.14) можно объяснить многие наблюдаемые при альфа-распаде явления. Период полураспада альфа-активных ядер тем больше, чем меньше энергия Е α испускаемых при распаде альфа-частиц. Однако, если периоды полураспада меняются от долей микросекунды до многих миллиардов лет, то диапазон изменения Е α очень мал и составляет примерно 4-9 МэВ для ядер с массовыми числами A>200. Регулярная зависимость периода полураспада от Е α была давно обнаружена в опытах с естественными а-активными радионуклидами и описана соотношением:

(3.15)

где и - константы, несколько различающиеся для разных радиоактивных семейств.

Это выражение называется законом Гейгера-Нэттола и представляет степенную зависимость постоянной распада λ от Е α с очень большим показателем . Такая сильная зависимость λ от Е α непосредственно вытекает из механизма прохождения альфа-частицей потенциального барьера. Прозрачность барьера, а следовательно и постоянная распада λ зависят от интеграла по области R 1 -R экспоненциально и быстро увеличиваются при росте Е α . Когда Е α приближается к 9 МэВ, время жизни по отношению к альфа-распаду составляет малые доли секунды, т.е. при энергии альфа-частиц 9 МэВ альфа-распад происходит практически мгновенно. Интересно, что такое значение Е α еще существенно меньше высоты кулоновского барьера U k , которая у тяжелых ядер для двухзарядной точечной частицы составляет примерно 30 МэВ. Барьер для альфа-частицы конечного размера несколько ниже и может быть оценен в 20-25 МэВ. Таким образом, прохождение кулоновского потенциального барьера альфа-частицей протекает весьма эффективно, исли ее энергия не ниже трети высоты барьера.

Прозрачность кулоновского барьера зависит также от заряда ядра, т.к. от этого заряда зависит высота кулоновского барьера. Альфа-распад наблюдается среди ядер с массовыми числами A>200 и в области A~150 . Понятно, что кулоновский барьер при A~150 заметно ниже и вероятность альфа-распада для одинаковых Е α значительно больше.

Хотя теоретически при любой энергии альфа-частицы существует вероятность проникновения через барьер, есть ограничения в возможности экспериментального определения этого процесса. Определить альфа-распад ядер с периодом полураспада больше 10 17 – 10 18 лет не удается. Соответствующее минимальное значение Е α выше у более тяжелых ядер и составляет 4 МэВ у ядер с A>200 и около 2 МэВ у ядер с A~150 . Следовательно выполнение соотношения (3.12) не обязательно свидетельствует о неустойчивости ядра по отношению к альфа-распаду. Оказывается, что соотношение (3.12) справедливо для всех ядер с массовыми числами больше 140, однако в области A>140 находится около одной трети всех встречающихся в природе стабильных нуклидов.



Границы устойчивости. Радиоактивные семейства. Границы устойчивости тяжелых ядер по отношению к альфа-распаду можно объяснить, используя модель ядерных оболочек. Ядра, имеющие только замкнутые протонные или нейтронные оболочки, являются особо прочно связанными. Поэтому, хотя энергия связи, приходящаяся на один нуклон, у средних и тяжелых ядер снижается при возрастании А , это снижение всегда замедляется при приближении А к магическому числу и ускоряется после прохождения А через магическое число протонов или нейтронов. В результате, энергия Е α оказывается значительно ниже минимального значения, при котором наблюдается альфа-распад, для магических ядер или массовое число ядра меньше массового числа магического ядра. Напротив, энергия Е α скачкообразно возрастает у ядер с массовыми числами, превышающими значения А магических ядер, и превосходит минимум практической стабильности а отношении альфа-распада.

В области массовых чисел A~150 альфа-активными являются нуклиды, ядра которых содержат на два ли несколько нейтронов больше магического числа 82. Некоторые из таких нуклидов имеют периоды полураспада много больше геологического возраста Земли и поэтому представлены в естественном виде – это нуклиды 144 Nd, 147 Sm, 149 Sm, 152 Gd. Другие были получены в результате ядерных реакций. Последние имеют недостаток нейтронов по сравнению со стабильными нуклидами соответствующих массовых чисел, и у этих нуклидов с альфа-распадом конкурирует обычно β + -распад. Самым тяжелым стабильным нуклидом является 209 Bi , ядро которого содержит магическое число нейтронов 126. Предшествующий висмуту элемент свинец имеет магическое число протонов 82, а 208 Pb является дважды магическим нуклидом. Все более тяжелые ядра радиоактивны.

Поскольку в результате альфа-распада ядро-продукт обогащается нейтронами, то после нескольких альфа-распадов следует бета-распад. Последний не меняет число нуклонов в ядре, поэтому любое ядро с массовым числом A>209 может превратиться в стабильное, только после некоторого числа альфа-распадов. Так как число нуклонов при альфа-распаде уменьшается сразу на 4 единицы, то возможно существование четырех независимых цепочек распада, каждая со своим конечным продуктом. Три из них представлены в природе и называются естественными радиоактивными семействами. Естественные семейства заканчивают свой распад образованием одного из изотопов свинца, конечным продуктом четвертого семейства является нуклид 209 Bi (см. таблицу 3.1).

Существование естественных радиоактивных семейств обязано трем долгоживущим альфа-активным нуклидам – 232 Th, 235 U, 238 U , имеющим периоды полураспада, сравнимые с геологическим возрастом Земли (5.10 9 лет). Наиболее долгоживущим представителем вымершего четвертого семейства является нуклид 237 Np – изотоп трансуранового элемента нептуния.

Таблица 3.1. Радиоактивные семейства

В настоящее время путем бомбардировки тяжелых ядер нейтронами и легкими ядрами получено очень много нуклидов, являющихся изотопами трансурановых элементов (Z>92). Все они неустойчивы и принадлежат к одному из четырех семейств.

Последовательнось распадов в естественных семействах показана на рис. 3.6. В тех случаях, когда вероятности альфа-распада и бета-распада оказываются сравнимыми, образуются вилки, которые соответствуют распадом ядер с испусканием либо альфа- либо бета-частиц. При этом конечный продукт распада остается неизменным.

Рис. 3.6. Схемы распадов в природных семействах.

Приведенные наименования присвоены радионуклидам при первоначальном изучении естественных цепочек распада.

2.3 Закономерности α - и β -распада

Активностью A нуклида в радиоактивном источнике называется число распадов, происходящих с ядрами образца в 1 с:

Единица активности беккерель (Бк) : 1Бк — активность нуклида, при которой за 1с происходит один акт распада. Внесистемная единица активности нуклида в радиоактивном источнике — кюри (Кu) : 1 Кu=3,7·10 10 Бк.

Альфа-распад . Альфа-распадом называется самопроизвольное превращение атомного ядра с числом протонов Z и нейтронов N в другое (дочернее) ядро, содержащее число протонов Z – 2 и нейтронов N – 2. При этом испускается α-частица – ядро атома гелия . Примером такого процесса может служить α-распад радия:

Альфа-частицы, испускаемые ядрами атомов радия, использовались Резерфордом в опытах по рассеянию на ядрах тяжелых элементов. Скорость α-частиц, испускаемых при α-распаде ядер радия, измеренная по кривизне траектории в магнитном поле, приблизительно равна 1,5·10 7 м/с, а соответствующая кинетическая энергия около 7,5·10 –13 Дж (приблизительно 4,8 МэВ). Эта величина легко может быть определена по известным значениям масс материнского и дочернего ядер и ядра гелия. Хотя скорость вылетающей α-частицы огромна, но она все же составляет только 5 % от скорости света, поэтому при расчете можно пользоваться нерелятивистским выражением для кинетической энергии.

Исследования показали, что радиоактивное вещество может испускать α-частицы с несколькими дискретными значениями энергий. Это объясняется тем, что ядра могут находиться, подобно атомам, в разных возбужденных состояниях. В одном из таких возбужденных состояний может оказаться дочернее ядро при α-распаде. При последующем переходе этого ядра в основное состояние испускается γ-квант. Схема α-распада радия с испусканием α-частиц с двумя значениями кинетических энергий приведена на рисунке 2.4.

Рисунок 2.4 - Энергетическая диаграмма α-распада ядер радия. Указано возбужденное состояние ядра радона Переход из возбужденного состояния ядра радона в основное сопровождается излучением γ-кванта с энергией 0,186 МэВ

Таким образом, α-распад ядер во многих случаях сопровождается γ-излучением.

В теории α-распада предполагается, что внутри ядер могут образовываться группы, состоящие из двух протонов и двух нейтронов, т. е. α-частица. Материнское ядро является для α-частиц потенциальной ямой, которая ограничена потенциальным барьером. Энергия α-частицы в ядре недостаточна для преодоления этого барьера (рисунок 2.5). Вылет α-частицы из ядра оказывается возможным только благодаря квантово-механическому явлению, которое называется туннельным эффектом. Согласно квантовой механике, существуют отличная от нуля вероятность прохождения частицы под потенциальным барьером. Явление туннелирования имеет вероятностный характер.

Бета-распад . При бета-распаде из ядра вылетает электрон. Внутри ядер электроны существовать не могут (см. § 1.2), они возникают при β-распаде в результате превращения нейтрона в протон. Этот процесс может происходить не только внутри ядра, но и со свободными нейтронами. Среднее время жизни свободного нейтрона составляет около 15 минут. При распаде нейтрон превращается в протон и электрон

Измерения показали, что в этом процессе наблюдается кажущееся нарушение закона сохранения энергии, так как суммарная энергия протона и электрона, возникающих при распаде нейтрона, меньше энергии нейтрона. В 1931 году В. Паули высказал предположение, что при распаде нейтрона выделяется еще одна частица с нулевыми значениями массы и заряда, которая уносит с собой часть энергии. Новая частица получила название нейтрино (маленький нейтрон). Из-за отсутствия у нейтрино заряда и массы эта частица очень слабо взаимодействует с атомами вещества, поэтому ее чрезвычайно трудно обнаружить в эксперименте. Ионизирующая способность нейтрино столь мала, что один акт ионизации в воздухе приходится приблизительно на 500 км пути. Эта частица была обнаружена лишь в 1953 г. В настоящее время известно, что существует несколько разновидностей нейтрино. В процессе распада нейтрона возникает частица, которая называется электронным антинейтрино . Она обозначается символом Поэтому реакция распада нейтрона записывается в виде

Аналогичный процесс происходит и внутри ядер при β-распаде. Электрон, образующийся в результате распада одного из ядерных нейтронов, немедленно выбрасывается из «родительского дома» (ядра) с огромной скоростью, которая может отличаться от скорости света лишь на доли процента. Так как распределение энергии, выделяющейся при β-распаде, между электроном, нейтрино и дочерним ядром носит случайный характер, β-электроны могут иметь различные скорости в широком интервале значений.

При β-распаде зарядовое число Z увеличивается на единицу, а массовое число A остается неизменным. Дочернее ядро оказывается ядром одного из изотопов элемента, порядковый номер которого в таблице Менделеева на единицу превышает порядковый номер исходного ядра. Типичным примером β-распада может служить превращение изотона тория возникающего при α-распаде урана в палладий

Наряду с электронным β-распадом обнаружен так называемый позитронный β + -распад, при котором из ядра вылетают позитрон и нейтрино . Позитрон – это частица-двойник электрона, отличающаяся от него только знаком заряда. Существование позитрона было предсказано выдающимся физиком П. Дираком в 1928 г. Через несколько лет позитрон был обнаружен в составе космических лучей. Позитроны возникают в результате реакции превращения протона в нейтрон по следующей схеме:

Гамма-распад . В отличие от α- и β-радиоактивности, γ-радиоактивность ядер не связана с изменением внутренней структуры ядра и не сопровождается изменением зарядового или массового чисел. Как при α-, так и при β-распаде дочернее ядро может оказаться в некотором возбужденном состоянии и иметь избыток энергии. Переход ядра из возбужденного состояния в основное сопровождается испусканием одного или нескольких γ-квантов, энергия которых может достигать нескольких МэВ.