Внутренняя энергия 1 моля газа. Внутренняя энергия и теплоемкость идеального газа средняя энергия

Внутренняя энергия тела равна сумме кинетической энергии поступательного и вращательного движения молекул этого тела, и потенциальной энергии их взаимного расположения

. (12.23)

Внутренняя энергия газа складывается из энергии отдельных молекул. В одном киломоле любого газа содержится N А молекул (N А - число Авогадро). Следовательно, один киломоль идеального газа имеет внутреннюю энергию, равную

(12.24)

Внутренняя энергия произвольной массы газа m

(12.25)

где m - молярная масса газа.

Таким образом, внутренняя энергия идеального газа зависит только от его объёма и давления .

Пользуясь понятием внутренней энергии газа, найдём выражение для его теплоёмкостей.

Теплоемкость это физическая величина, численно равная количеству теплоты, которое необходимо сообщить веществу для нагревания его на один градус.

Удельной теплоёмкостью "c" газа называется физическая величина, численно равная количеству теплоты, которое необходимо сообщить единице массы газа для нагревания её на один градус.

Кроме удельной теплоёмкости для газов вводится понятие молярной теплоёмкости.

Молярной теплоёмкостью "C" называется физическая величина, численно равная количеству теплоты, которое необходимо сообщить одному молю газа, чтобы увеличить его температуру на один градус

Для газов вводятся в рассмотрение молярные теплоемкости при постоянном объёме "C v " и при постоянном давлении "C p ".

Если газ нагревается при постоянном объёме, то подводимое к газу тепло идёт на увеличение его внутренней энергии. Следовательно, в этом случае изменение внутренней энергии газа при нагревании его на один градус будет равно молярной теплоёмкости

, т.е. (12.27)

Таким образом, для определения C v необходимо знать число степеней свободы молекул газа.

При нагревании одного моля газа в условиях постоянного давления сообщаемое ему извне тепло идёт не только на увеличение его внутренней энергии, но и на совершение работы против внешних сил. Следовательно,

(12.28)

Работа, совершаемая по свободному расширению одного моля газа в цилиндре под поршнем равна

где S h = DV - увеличение первоначального объёма при нагревании газа на один градус (DV = V 2 - V 1).

На основании уравнения Менделеева - Клапейрона для одного моля идеального газа .

В нашем случае, где T 2 = T 1 + 1, т.е. откуда Тогда , следовательно

или . (12.30)

Так как c p = c v + R/m, то

. (12.31)

Очень часто для характеристики газа пользуются отношением

. (12.32)

Согласно многочисленным исследованиям по определению C p , и C v между теорией и экспериментом для одноатомных и двухатомных молекул имеется удовлетворительное совпадение. Согласно рассмотренной нами теории теплоёмкости газов должны быть целыми и кратными R/2. Однако, между теоретическими и экспериментальными данными имеется определённое расхождение.

Особенно большие расхождения между теорией и экспериментом наблюдаются при рассмотрении температурной зависимости теплоёмкости. Согласно изложенной теории теплоёмкость не должна зависеть от температуры; на самом же деле это оказывается справедливым только в определённых интервалах температур, при этом, в различных интервалах теплоёмкость имеет значения, соответствующее различному числу степеней свободы (рис.12.4, 12.5).

Это связано с тем, что число степеней свободы одного и того же газа изменяется с изменением температуры. При низких температурах молекулы газа обладают только поступательными степенями свободы, при средних температурах - поступательными и вращательными степенями свободы, а при высоких температурах - поступательными, вращательными и колебательными степенями свободы. При этом, переход от одного числа степеней свободы к их другому числу осуществляется скачкообразно. Изменение числа степеней свободы приводит к изменению теплоемкостей газа. Такое поведение теплоёмкостей объясняется квантовой теорией. Согласно этому объяснению энергия вращательного и колебательного движений изменяются скачкообразно - квантуется, а энергия поступательного движения нет.

Молекулы газа, вернее подавляющая их часть, имеют энергию близкую по своему значению к средней кинетической энергии поступательного движения (<Е к >). Незначительная часть их имеет энергию, значительно превышающую <Е к >. При низких температурах молекулы газа практически движутся поступательно, поэтому теплоёмкость газа равна 3R/2.

Повышение температуры сопровождается увеличением <Е к > в результате чего всё большее и большее число молекул вовлекается во вращательное движение и при некоторой температуре, (вернее, в определённом интервале температур) все молекулы будут вращаться. Это соответствует увеличению их теплоёмкости до 5R/2. Наконец, при дальнейшем увеличении температуры часть молекул начинает совершать колебательное движение, в связи, с чем теплоёмкость станет равной 7R/2.

Таким образом, классическая теория теплоёмкостей верна только для отдельных температурных интервалов, при этом, каждому интервалу соответствует своё число степеней свободы.

Формулы кинетической энергии молекул газа и молярных теплоемкостей в классической теории теплоемкости, основанной на теореме Больцмана о равномерном распределении энергии по степеням свободы, представлены в таблицах 12.1 и 12.2.

Как отмечалось в § 4.1, силы взаимодействия молекул в идеальном газе отсутствуют. Это означает, что молекулярно-потенциальной энергии у идеального газа нет. Кроме того, атомы идеального газа представляют собой материальные точки, т. е. не имеют внутренней структуры, а значит, не имеют и энергии, связанной с движением и взаимодействием частиц внутри атома. Таким образом, внутренняя энергия

идеального газа представляет собой только сумму значений кинетической энергии хаотического движения всех его молекула

Поскольку у материальной точки вращательного движения быть не может, то у одноатомных газов (молекула состоит из одного атома) молекулы обладают только поступательным движением. Так как среднее значение энергии поступательного движения молекул определяется соотношением (4.8): то внутренняя энергия одного моля одноатомного идеального газа выразится формулой где - постоянная Авогадро. Если учесть, что то получим

Для произвольной массы одноатомного идеального газа имеем

Если молекула газа состоит из двух жестко связанных атомов (двухатомный газ), то молекулы при хаотическом движении приобретают еще и вращательное движение, которое происходит вокруг двух взаимно перпендикулярных осей. Поэтому при одинаковой температуре внутренняя энергия двухатомного газа больше, чем одноатомного, и выражается формулой

Наконец, внутренняя энергия многоатомного газа (молекула содержит три или больше атомов) в два раза больше, чем у одноатомного при той же температуре:

поскольку вращение молекулы вокруг трех взаимно перпендикулярных осей вносит в энергию теплового движения такой же вклад, как поступательное движение молекулы по трем взаимно перпендикулярным направлениям.

Отметим, что формулы (5.23) и (5.24) теряют силу для реальных газов при высоких температурах, так как при этом в молекулах возникают еще колебания атомов, что ведет к увеличению внутренней энергии газа. (Почему это не относится к формуле


Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q , необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c .

где M – молярная масса вещества.

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: C V молярная теплоемкость в изохорном процессе (V = const) и C p молярная теплоемкость в изобарном процессе (p = const).

В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует

где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT . Отсюда следует:

где R – универсальная газовая постоянная. При p = const

Молярная теплоемкость C p газа в процессе с постоянным давлением всегда больше молярной теплоемкости C V в процессе с постоянным объемом (рис. 3.10.1).

В частности, это отношение входит в формулу для адиабатического процесса.

Между двумя изотермами с температурами T 1 и T 2 на диаграмме (p , V ) возможны различные пути перехода. Поскольку для всех таких переходов изменение температуры ΔT = T 2 – T 1 одинаково, следовательно, одинаково изменение ΔU внутренней энергии. Однако, совершенные при этом работы A и полученные в результате теплообмена количества теплоты Q окажутся различными для разных путей перехода. Отсюда следует, что у газа имеется бесчисленное количество теплоемкостей. C p и C V – это лишь частные (и очень важные для теории газов) значения теплоемкостей.

Термодинамические процессы, в которых теплоемкость газа остается неизменной, называются политропическими . Все изопроцессы являются политропическими. В случае изотермического процесса ΔT = 0, поэтому C T = ∞. В адиабатическом процессе ΔQ = 0, следовательно, C ад = 0.

Следует отметить, что «теплоемкость», как и «количество теплоты» – крайне неудачные термины. Они достались современной науке в наследство от теории теплорода , господствовавшей в XVIII веке. Эта теория рассматривала теплоту как особое невесомое вещество, содержащееся в телах. Считалось, что оно не может быть ни создано, ни уничтожено. Нагревание тел объяснялось увеличением, а охлаждение – уменьшением содержащегося внутри них теплорода. Теория теплорода несостоятельна. Она не может объяснить, почему одно и то же изменение внутренней энергии тела можно получить, передавая ему разное количество теплоты в зависимости от работы, которую совершает тело. Поэтому лишено физического смысла утверждение, что «в данном теле содержится такой-то запас теплоты».

В молекулярно-кинетической теории устанавливается следующее соотношение между средней кинетической энергией поступательного движения молекул и абсолютной температурой T :

При изменении температуры на ΔT внутренняя энергия изменяется на величину

Это соотношение хорошо подтверждается в экспериментах с газами, состоящими из одноатомных молекул (гелий, неон, аргон). Однако, для двухатомных (водород, азот) и многоатомных (углекислый газ) газов это соотношение не согласуется с экспериментальными данными. Причина такого расхождения состоит в том, что для двух- и многоатомных молекул средняя кинетическая энергия должна включать энергию не только поступательного, но и вращательного движения молекул.

На рис. 3.10.2 изображена модель двухатомной молекулы. Молекула может совершать пять независимых движений: три поступательных движения вдоль осей X , Y , Z и два вращения относительно осей X и Y . Опыт показывает, что вращение относительно оси Z , на которой лежат центры обоих атомов, может быть возбуждено только при очень высоких температурах. При обычных температурах вращение около оси Z не происходит, так же как не вращается одноатомная молекула. Каждое независимое движение называется степенью свободы . Таким образом, одноатомная молекула имеет 3 поступательные степени свободы, «жесткая» двухатомная молекула имеет 5 степеней (3 поступательные и 2 вращательные), а многоатомная молекула – 6 степеней свободы (3 поступательные и 3 вращательные).

В классической статистической физике доказывается так называемая теорема о равномерном распределении энергии по степеням свободы :

Если система молекул находится в тепловом равновесии при температуре T , то средняя кинетическая энергия равномерно распределена между всеми степенями свободы и для каждой степени свободы молекулы она равна

Из этой теоремы следует, что молярные теплоемкости газа C p и C V и их отношение γ могут быть записаны в виде

Для газа, состоящего из двухатомных молекул (i = 5)

Экспериментально измеренные теплоемкости многих газов при обычных условиях достаточно хорошо согласуются с приведенными выражениями. Однако, в целом классическая теория теплоемкости газов не может считаться вполне удовлетворительной. Существует много примеров значительных расхождений между теорией и экспериментом. Это объясняется тем, что классическая теория не в состоянии полностью учесть энергию, связанную с внутренними движениями в молекуле.

Теорему о равномерном распределении энергии по степеням свободы можно применить и к тепловому движению частиц в твердом теле. Атомы, входящие в состав кристаллической решетки, совершают колебания около положений равновесия. Энергия этих колебаний и представляет собой внутреннюю энергию твердого тела. Каждый атом в кристаллической решетке может колебаться в трех взаимно перпендикулярных направлениях. Следовательно, каждый атом имеет 3 колебательные степени свободы. При гармонических колебаниях средняя кинетическая энергия равна средней потенциальной энергии. Поэтому в соответствии с теоремой о равномерном распределении на каждую колебательную степень свободы приходится средняя энергия kT , а на один атом – 3kT . Внутренняя энергия 1 моля твердого вещества равна:

Это соотношение называется законом Дюлонга–Пти . Для твердых тел практически не существует различия между C p и C V из-за ничтожно малой работы при расширении или сжатии.

Опыт показывает, что у многих твердых тел (химических элементов) молярная теплоемкость при обычных температурах действительно близка к 3R . Однако, при низких температурах наблюдаются значительные расхождения между теорией и экспериментом. Это показывает, что гипотеза о равномерном распределении энергии по степеням свободы является приближением. Наблюдаемая на опыте зависимость теплоемкости от температуры может быть объяснена только на основе квантовых представлений.

Рассмотрим внутреннюю энергию идеального газа. В идеальном газе притяжение между молекулами отсутствует. Поэтому их потенциальная энергия равна нулю. Тогда внутренняя энергия этого газа будет складываться только из кинетических энергий отдельных молекул. Вычислим сначала внутреннюю энергию одного моля газа. Известно, что число молекул, находящихся в одном моле вещества, равно числу Авогадро N А. Средняя кинетическая энергия молекулы находится по формуле. Следовательно, внутренняя энергияU  одного моля идеального газа равна:

(1)

так как kN A = R - универсальная газовая постоянная. Внутренняя энергия U произвольной массы газа M равна внутренней энергии одного моля, умноженной на число молей , равной  = M / , где - молярная масса газа, т.е.

(2)

Таким образом, внутренняя энергия данной массы идеального газа зависит только от температуры и не зависит от объёма и давления.

Количество теплоты

Внутренняя энергия термодинамической системы под воздействием ряда внешних факторов может меняться, о чём как видно из формулы (2), можно судить по изменению температуры этой системы. Например, если быстро сжать газ, то его температура повышается. При сверлении металла также наблюдается его нагревание. Если привести в контакт два тела, имеющих разные температуры, то температура более холодного тела повышается, а более нагретого - понижается. В первых двух случаях внутренняя энергия изменяется за счёт работы внешних сил, а в последнем - происходит обмен кинетическими энергиями молекул, в результате чего суммарная кинетическая энергия молекул нагретого тела уменьшается, а менее нагретого - возрастает. Происходит передача энергии от горячего тела к холодному без совершения механической работы. Процесс передачи энергии от одного тела к другому без совершения механической работы получил название теплопередачи или теплообмена . Передача энергии между телами, имеющими разные температуры, характеризуется величиной, называемой количеством теплоты или теплотой , т.е. количество теплоты - это энергия, переданная путём теплообмена от одной термодинамической системы к другой вследствие разницы температуры этих систем.

Первый закон термодинамики

В природе существует закон сохранения и превращения энергии , согласно которомуэнергия не исчезает и не возникает вновь, а лишь переходит из одного вида в другой . Этот закон применительно ктепловым процессам , т.е. процессам, связанным с изменением температуры термодинамической системы, а также с изменением агрегатного состояния вещества, получил название первого закона термодинамики.

Если термодинамической системе сообщить некоторое количество теплоты Q , т.е. некоторую энергию, то за счёт этой энергии в общем случае происходит изменение её внутренней энергииU и система, расширяясь, совершает определённую механическую работуA . Очевидно, что, согласно закону сохранения энергии, должно выполняться равенство:

(3)

т.е. количество теплоты, сообщённое термодинамической системе, расходуется на изменение её внутренней энергии и на совершение системой механической работы при её расширении. Соотношение (4) носит название первого закона термодинамики.

Выражение первого закона удобно записывать для малого изменения состояния системы при сообщении ей элементарного количества теплоты dQ и совершения системой элементарной работыdA , т.е.

(4)

где dU - элементарное изменение внутренней энергии системы. Формула (4) представляет собой запись первого закона термодинамики в дифференциальной форме.

Опыт показывает, что внутренняя энергия идеального газа зависит только от температуры:

Здесь В - коэффициент пропорциональности, который остается постоянным в весьма широком интервале температур.

Отсутствие зависимости внутренней энергии от занимаемого газом объема указывает на то, что молекулы идеального газа подавляющую часть времени не взаимодействуют друг с другом. Действительно, если бы молекулы взаимодействовали между собой, во внутреннюю энергию входила бы слагаемым потенциальная энергия взаимодействия, которая зависела бы от среднего расстояния между молекулами, т. е. от .

Отметим, что взаимодействие должно иметь место при столкновениях, т. е. при сближении молекул на очень малое расстояние. Однако такие столкновения в разреженном газе происходят редко. Подавляющую часть времени каждая молекула проводит в свободном полете.

Теплоемкостью какого-либо тела называется величина, равная количеству тепла, которое нужно сообщить телу, чтобы повысить его температуру на один кельвин. Если сообщение телу количества тепла повышает его температуру на то теплоемкость по определению равна

Эта величина измеряется в джоулях на кельвин (Дж/К).

Теплоемкость моля вещества, называемую молярной теплоемкостью, мы будем обозначать прописной буквой С. Измеряется она в джоулях на моль-кельвин (Дж/(моль К)).

Теплоемкость единицы массы вещества называется удельной теплоемкостью. Ее мы будем обозначать строчной буквой с. Измеряется с в джоулях на килограмм-кельвин

Между молярной и удельной теплоемкостями одного и того же вещества имеется соотношение

( - молярная масса).

Величина теплоемкости зависит от условий, при которых происходит нагревание тела. Наибольший интерес представляет теплоемкость для случаев, когда нагревание происходит при постоянном объеме или при постоянном давлении. В первом случае теплоемкость называется теплоемкостью при постоянном объеме (обозначается ), во втором - теплоемкостью при постоянном давлении

Если нагревание происходит при постоянном объеме, тело не совершает работы над внешними телами и, следовательно, согласно первому началу термодинамики (см. (83.4)), все тепло идет на приращение внутренней энергии тела:

Из (87.4) вытекает, что теплоемкость любого тела при постоянном объеме равна

Такая запись подчеркивает то обстоятельство, что при дифференцировании выражения для U по Т объем следует считать постоянным. В случае идеального газа U зависит только от Т, так что выражение (87.5) можно представить в виде

(чтобы получить молярную теплоемкость, нужно взять внутреннюю энергию моля газа).

Выражение (87.1) для одного моля газа имеет вид Продифференцировав его по Т, получим, что Таким образом, выражение для внутренней энергии одного моля идеального газа можно представить в виде

где - молярная теплоемкость газа при постоянном объеме.

Внутренняя энергия произвольной массы газа будет равна внутренней энергии одного моля, умноженной на число молей газа, содержащихся в массе :

Если нагревание газа происходит при постоянном давлении, то газ будет расширяться, совершая над внешними телами положительную работу. Следовательно, для повышения температуры газа на один кельвин в этом случае понадобится больше тепла, чем при нагревании при постоянном объеме, - часть тепла будет затрачиваться на совершение газом работы. Поэтому теплоемкость при постоянном давлении должна быть больше, чем теплоемкость при постоянном объеме.

Напишем уравнение (84.4) первого начала термодинамики для моля газа:

В этом выражении индекс при указывает на то, что тепло сообщается газу в условиях, когда постоянно. Разделив (87.8) на получим выражение для молярной теплоемкости газа при постоянном давлении:

Слагаемое равно, как мы видели, молярной теплоемкости при постоянном объеме. Поэтому формула (87.9) может быть написана следующим образом:

(87.10)

Величина представляет собой приращение объема моля газа при повышении температуры на один кельвин, получающееся в случае, когда постоянно. В соответствии с уравнением состояния (86.3) . Дифференцируя это выражение по Т, полагая р=const, находим