Поделка паук из шишек своими руками. Осенние поделки. Паук на паутине. Материалы и инструменты

Для оценки технического состояния объекта необходимо определить текущее значение с нормативным. Однако структурные параметры в большинстве случаев не поддаются измерению без разборки узла или агрегата, но каждая разборка и нарушение взаимного положения приработавшихся деталей приводят к сокращению остаточного ресурса на 30-40%.

Для этого при диагностировании о значениях структурных показателей судят по косвенным, диагностическим признакам, качественной мерой которых являются диагностические параметры. Таким образом, диагностический параметр - это качественная мера проявления технического состояния автомобиля, его агрегата и узла по косвенному признаку, определение количественного значения которого возможно без их разборки.

При измерении диагностических параметров неизбежно регистрируются помехи, которые обусловлены конструктивными особенностями диагностируемого объекта и избирательными способностями прибора и его точностью. Это затрудняет постановку диагноза и снижает его достоверность. Поэтому важным этапом является отбор из выявленной исходной совокупности наиболее значимых и эффективных в использовании диагностических параметров, для чего они должны отвечать четырём основным требованиям: стабильности, чувствительности и информативности.

Общий процесс технического диагностирования включает в себя: обеспечение функционирования объекта на заданных режимах или тестовое воздействие на объект; улавливание и преобразование с помощью датчиков сигналов, выражающих значения диагностических параметров, их измерение; постановку диагноза на основании логической обработки полученной информации путём сопоставления с нормативами.

Диагностирование осуществляется либо в процессе работы самого автомобиля, его агрегатов и систем на заданных нагрузочных, скоростных и тепловых режимах (функциональное диагностирование), либо при использовании внешних приводных устройств, с помощью которых на автомобиль подаются тестовые воздействия (тестовое диагностирование). Эти воздействия должны обеспечивать получение максимальной информации о техническом состоянии автомобиля при оптимальных трудовых и материальных затратах.

Техническая диагностика определяет рациональную последовательность проверок механизмов и на основе изучения динамики изменения параметров технического состояния агрегатов и узлов машины решает вопросы прогнозирования ресурса и безотказной работы.

Техническое диагностирование - процесс определения технического состояния объекта диагностирования с определённой точностью. Диагностирование завершается выдачей заключения о необходимости проведения исполнительской части операций ТО или ремонта. Важнейшее требование к диагностированию - возможность оценки состояния объекта без его разборки. Диагностирование может быть объективным (осуществляемым с помощью контрольно-измерительных средств, специального оборудования, приборов, инструмента) и субъективным, производимым с помощью органов чувств проверяющего человека и простейших технических средств.

Таблица 1:Перечень диагностических параметров автомобилей с бензиновыми двигателями

Наименование

Значение для а/м ГАЗ-3110

Двигатель и система электрооборудования

Начальный угол опережения зажигания

Зазор между контактами прерывателя

Угол замкнутого состояния контактов прерывателя

Падение напряжения на контактах прерывателя

Напряжение аккумуляторной батареи

Напряжение, ограничиваемое реле-регулятором

Напряжение в сети электрооборудования

Зазор между электродами свечей

Пробивное напряжение на свечах

Электрическая ёмкость конденсатора

Мощность генератора

Мощность стартера

Частота вращения коленчатого вала при запуске двигателя

1350 об./мин

Ток, потребляемый стартером

Прогиб ремня привода агрегатов при задаваемом усилии

810 мм при 4 кгс (4 даН)

Светоосветительная аппаратура

Направление максимальной силы света фар

совпадает с осью отсчёта

Суммарная сила света, измеренная в направлении оси отсчёта

не менее 20000 кд

Сила света светосигнальных огней

700 кд (макс.)

Частота следования проблесков указателей поворотов

Время от момента включения указателей поворотов до появления первого проблеска

ВЫПОЛНИЛ: МЕЦЛЕР АНДРЕЙ

Наряду с традиционными методами контроля, за последнее десятилетие, нашли применение современные высокоэффективные способы диагностики, обеспечивающие выявление дефектов электрооборудования на ранней стадии их развития и позволяющие контролировать достаточно широкий перечень параметров.

Наиболее привлекательные из них для электротехнических комплексов являются: инфракрасная диагностика, ультразвуковая дефектоскопия; диагностика методами частичных разрядов. Они позволяют успешно определять места имеющихся дефектов с высокой степенью достоверности на действующем электрооборудовании.

При проведении инфракрасной диагностики получают термограмму.

Термограмма представляет собой специальное изображение, полученное с помощью инфракрасных лучей. В диагностических работах применение термограмм является одним из наиболее эффективных и безопасных способов получения объективной информации относительно наличия дефектов на определенных участках конструкции.

Получают термограмму при помощи специального прибора - тепловизора. Как это происходит? Тепловизор оснащен фотоприемником, выборочно чувствительным к длине инфракрасных волн. При попадании на этот фотоприемник ИК-излучения от отдельных точек исследуемого объекта, сконцентрированного системой специальных линз, оно преобразуется в соответствующий электрический сигнал. Этот сигнал проходит цифровую обработку и поступает на блок отображения информации. Каждому значению сигнала присваивается тот или иной цвет, что дает возможность получить на экране монитора цветную термограмму, по которой можно легко проанализировать состояние исследуемого объекта. Различные цвета и их интенсивность на термограмме означают определённую температуру на анализируемом участке. С помощью термограммы можно выявить места теплопотерь, невидимые невооруженным глазом, а также воздушные пробки и очаги накопления влаги.

НЕДОСТАТКИ

тепловизионная диагностика электрооборудования сопряжена с рядом ограничений, накладываемых погодными условиями:

    Солнечная радиация способна нагревать контролируемый объект и давать ложные аномалии на объектах с высокой отражательной способностью. Оптимальное время для проведения диагностики – ночь или пасмурный день.

    Ветер. Диагностика на открытом воздухе сопряжена с влиянием на тепловые поля динамики воздушных масс. Причем, охлаждающее влияние может быть настолько интенсивным, что данные диагностики могут иметь не релевантный характер. Не рекомендуется проводить обследования при скорости ветра, превышающем 8 м/с.

    Дождь, туман, мокрый снег. Диагностику можно проводить только при слабых сухих осадках (снег) или слабом моросящем дожде.

Ультрозвуковая диагностика

Акустический метод основан на регистрации звуковых импульсов, возникающих при электрических разрядах, с помощью датчиков, устанавливаемых на стенку бака. Современные ультразвуковые датчики позволяют регистрировать разрядные процессы с энергией до 10 - 7 Дж. Этот метод отличается оперативностью и позволяет локализовать место дефекта, сопровождающегося разрядами.

В электрооборудовании могут быть простые и сложные условия распространения ультразвука. В высоковольтных вводах, измерительных трансформаторах обычно имеются простые условия распространения ультразвука, при которых звук от разряда распространяется в почти однородной среде на расстояния порядка сотни длин волн и, поэтому, затухает незначительно. В силовых трансформаторах источник электрического разряда может находиться в глубине оборудования. В этом случае ультразвук проходит ряд преград и значительно затухает. Если у небольших маслонаполненных объектов величина акустического сигнала практически одинакова в любой точке поверхности, то при обследовании силового трансформатора это отличие более значительно, и необходимо перемещая датчик искать область поверхности с максимальным сигналом.

Частичный разряд – это электрический разряд, длительность которого составляет единицы-десятки наносекунд. Частичный разряд частично шунтирует изоляцию кабельной линии. Частичные разряды появляются в слабом месте кабельной линии под воздействием переменного напряжения и приводят к постепенному развитию дефекта и разрушению изоляции.

Сущность метода измерения частичных разрядов заключается в следующем. В момент появления частичного разряда в кабельной линии возникает два коротких импульсных сигнала, длительности которых десятки-сотни наносекунд. Эти импульсы распространяются к разным концам кабельной линии. Измеряя импульсы, достигшие начала кабеля, можно определить расстояние до места их возникновения и уровень.

Структурная схема измерений частичных разрядов в кабельных линиях показана на рисунке. Основными узлами измерительной схемы являются: компьютерный анализатор дефектов и частичных разрядов в кабельных линиях и высоковольтный адаптер. Компьютерный анализатор дефектов и частичных разрядов в кабельных линиях может быть выполнен в виде совокупности измерительного блока и портативного компьютера (как показано на рисунке) или в виде специализированного измерительного прибора. Высоковольтный адаптер служит для развязки компьютерного анализатора и источника воздействующего напряжения.

Последовательность анализа дефектов кабельной линии с частичными разрядами и представление результатов измерений, на примере прибора ИДК, показана на рисунке ниже.

Сначала кабельная линия отключается от источника воздействующего напряжения, вызывающего появление частичных разрядов. При помощи кнопки Кн на высоковольтном адаптере (или специального устройства) проверяют разряженность кабельной линии. Компьютерный анализатор включают в режим импульсного рефлектометра и снимают рефлектограмму кабельной линии. По рефлектограмме определяют длину кабельной линии и коэффициент затухания импульсов в линии.

Затем переключают компьютерный анализатор в режим измерения частичных разрядов. Далее снимают гистограмму - распределение частоты следования n импульсов частичных разрядов от амплитуд импульсов от частичных разрядов Uчр, пришедших к началу кабельной линии. По гистограмме n=f(Uчр) можно сделать вывод о наличии и количестве слабых мест (потенциальных дефектов) в кабельной линии. Так, на рисунке показана гистограмма кабельной линии с тремя потенциальными дефектами. Дефект №1 имеет самую высокую частоту следования n1 и самую маленькую амплитуду импульсов U1. Соответствующие параметры имеют дефект №2 и дефект №3.

По амплитуде импульсов частичных разрядов, представленных на гистограмме, еще нельзя делать вывод о мощности частичного разряда в месте дефекта, так как пока неизвестно расстояние до него. В тоже время известно, что импульсы частичных разрядов, имея малые длительности, сильно затухают при распространении по кабельной линии. Поэтому следующим шагом является измерение расстояния до каждого из дефектов.

Компьютерный анализатор дефектов позволяет измерить расстояние до каждого из дефектов: L1, L2 и L3 и сохранить их в памяти.

Далее, на основе гистограммы и данных о расстоянии до каждого из дефектов, компьютерный анализатор вычисляет мощность частичных разрядов в каждом из дефектов и строит сводную таблицу дефектов. Указанная таблица может быть вызвана на экран компьютерного анализатора.

ВЫПОЛНИЛА: УЛЫБИНА СВЕТЛАНА

Диагностика электротехнического оборудования

Электродвигатели в процессе эксплуатации подвержены непрерывным качественным изменениям. Основные параметры показателей надежности электродвигателей индентифицируются через диагностические параметры, используемые в электротехническом оборудовании, т.е. электрические параметры отклонений тока и напряжения, изменения составляющих этих величин по амплитуде, фазе, частоте и др. Следовательно, эти параметры в совокупности с параметрами косвенной информации о состоянии электродвигателя, параметрами тепловых процессов в статорной и роторной обмотках, а также в железе статора, вибрационными и другими, могут использоваться для получения диагностических признаков.

Для реализации методов диагностирования рекомендуется два метода использования диагностической информации: метод сопоставления фактической реализации сигнала с его эталонными значениями и метод выделения из контролируемого сигнала совокупности диагностических признаков. Однако необходимо отметить, что анализ существующих в настоящее время на НПС средств контроля режимных параметров электродвигателей насосов МН (давление масла в подшипниках; температура масла, подшипников, обмоток и железа статора; ток двух фаз; активная мощность) не позволяет выявить диагностические признаки, способные однозначно определить приоритетность анализируемых методов диагностики электродвигателей.

Диагностические признаки работоспособности электродвигателей насосов магистральных нефтепроводов целесообразно разделить на три группы:

    по элементам конструкции электрических машин (изоляция, обмотки, магнитопроводы статора и ротора, вал и подшипники, воздушный зазор и эксцентриситет, щетки и узел возбуждения);

    по косвенным признакам (тепловое состояние, вибрация, шум);

по прямым признакам (ток, момент на валу, скольжение, КПД, угол нагрузки).

физико-химический (лабораторный);

хроматографический;

инфракрасной термографии;

вибродиагностика;

Физико-химические методы . Энергетическое воздействие на изоляцию электрических устройств приводит к ее изменениям на молекулярном уровне. Это происходит вне зависимости от типа изоляции и завершается химическими реакциями с образованием новых химических соединений, причем под действием электромагнитного поля, температуры, вибрации одновременно идут процессы разложения и синтеза. Анализируя количество и состав появляющихся новых химических соединений можно делать выводы о состоянии всех элементов изоляции. Наиболее просто это сделать с жидкой углеводородной изоляцией, каковой являются минеральные масла, так как все или почти все образовавшиеся новые химические соединения остаются в замкнутом объеме.

Метод хроматографического контроля маслонаполненного оборудования. Этот метод основан на хроматографическом анализе различных газов, выделяющихся из масла и изоляции при дефектах внутри маслонаполненного электрооборудования. Алгоритмы определения дефектов, на ранней стадии их возникновения, основанные на анализе состава и концентрации газов, являются распространенными, хорошо проработанными для диагностики маслонаполненного электрооборудования и описаны в . С помощью хроматографического анализа растворенных газов (ХАРГ) можно обнаружить две группы

дефектов: 1) перегревы токоведущих соединений и элементов конструкции

остова, 2) электрические разряды в масле.

Оценка состояния маслонаполненного оборудования осуществляется на базе контроля:

Предельных концентраций газов;

Скорости нарастания концентраций газов;

Отношений концентраций газов.

Суть методики критериев заключается в том, что выход значений параметров за установленные границы следует рассматривать как признак наличия дефектов, которые могут привести к отказу оборудования. Особенность метода хроматографического анализа газов заключается в том, что нормативно устанавливаются только граничные концентрации газов, достижение которых свидетельствует лишь о возможности развития дефектов в трансформаторе. Работа таких трансформаторов нуждается в особом контроле. Степень опасности развития дефекта определяется по относительной скорости нарастания концентрации газов. Если относительная скорость нарастания концентрации газов превышает 10 % в месяц, то дефект считается быстроразвивающимся.

Образование газообразных продуктов разложения изоляционных мате

риалов под действием электрического поля, разрядов, кавитации тепла – не

отъемлемое явление работающего электротехнического оборудования.

В отечественной и зарубежной практике широко используется метод диаг-

ностики состояния оборудования по составу и концентрации растворенных в

масле газов: H2, СО, СО2, СН4, С2Н6, С2Н4, С2Н2.

Испытательные работы по восстановлению ресурса трансформаторного масла проводились непосредственно на действующих электроустановках ПС 110/35-10 кВ «Озерки». По результатам исследований разработана типовая программа по вводу антиокислительной присадки «Ионол» в масло трансформаторов класса напряжения 35-110 киловольт, что позволит увеличить его остаточный ресурс. Трансформаторное масло используется в силовом электрооборудовании в качестве электроизолирующей и теплоотводящей среды. По мнению специалистов, это тот материал, при воздействии на который можно добиться повышения надежности эксплуатации маслонаполненного электрооборудования.

. Метод основан на измерении диэлектрических характеристик, к которым относятся токи утечки, величины емкости, тангенс угла диэлектрических потерь (tg δ ) и др. Абсолютные значения tgd, измеренные при напряжениях, близких к рабочему, а также его приращения при изменении испытательного напряжения, частоты и температуры, характеризуют качество и степень старения изоляции.

Для измерения tgd и емкости изоляции используются мосты переменного тока (мосты Шеринга). Метод используется для контроля высоковольтных измерительных трансформаторов и конденсаторов связи.

. Потери электрической энергии на нагрев элементов и узлов электрооборудования в процессе эксплуатации зависят от их технического состояния. Измеряя инфракрасное излучение, обусловленное нагревом, можно делать выводы о техническом состоянии электрооборудования. Невидимое инфракрасное излучение с помощью тепловизоров преобразуется в видимый человеком сигнал. Данный метод дистанционный, чувствительный, позволяющий регистрировать изменения температуры в доли градуса. Поэтому его показания сильно подвержены влияющим факторам, например, отражающей способности объекта измерения, температуре и состоянию окружающей среды, так как запыленность и влажность поглощают инфракрасное излучение, и др.

Данные инфракрасной термографии помогают сделать наиболее точные выводы о состоянии объекта и своевременно принять меры для устранения дефектов и неисправностей Для тепловизионного контроля электрооборудования и линий электропередачи, находящихся под рабочим напряжением, специалисты «Челябэнерго» используют два вида контрольных приборов: инфракрасный и ультрафиолетовый. На вооружении у энергетиков – тепловизор FLIR i5, это устройство с высокой точностью измеряет и показывает температуру узлов и соединений. Применение современных методов диагностирования электрооборудования способствует значительному снижению затрат на капитальный ремонт линий и подстанций, повышению надежности и качества электроснабжения потребителей. До конца года плановая диагностика будет проведена во всех районах электрических сетей производственного объединения «Златоустовские электросети».

Метод вибродиагностики . Для контроля над техническим состоянием механических узлов электрооборудования используют связь параметров объекта (его массы и жесткости конструкции) со спектром частот собственной и вынужденной вибрации. Всякое изменение параметров объекта в процессе эксплуатации, в частности жесткости конструкции вследствие ее усталости и старения, вызывает изменение спектра. Чувствительность метода увеличивается с ростом информативных частот. Оценка состояния по смещению низкочастотных составляющих спектра менее эффективна.

Вибрация электродвигателей – сложный негармонический процесс. Основные причины вибраций в электродвигателях:

1 механический небаланс ротора, обусловленный эксцентриситетом центра тяжести вращающейся массы;

2 магнитный небаланс ротора, обусловленный электромагнитным взаимодействием между статором и ротором;

3 резонанс, вызванный совпадением критической скорости вала с частотой вращения;

4 дефекты и чрезмерная игра подшипников;

5 искривление вала;

6 выдавливание масла из подшипников при длительном простое электродвигателя;

7 дефекты муфты, соединяющей насос с электродвигателем;

8 расцентровка.

Методы контроля частичных разрядов в изоляции . Процессы возникновения и развития дефектов изоляторов ВЛ, независимо от их материала, сопровождаются появлением электрических или частичных разрядов, которые, в свою очередь, порождают электромагнитные (в радио и оптическом диапазонах) и звуковые волны. Интенсивность проявления разрядов зависит от температуры и влажности атмосферного воздуха и связана с наличием атмосферных осадков. Такая зависимость получаемой диагностической информации от атмосферных условий требует совмещать процедуру диагностирования интенсивности разрядов в подвесной изоляции ЛЭП с необходимостью обязательного контроля температуры и влажности окружающей среды.

Для контроля широко применяются все виды и диапазоны излучения. Метод акустической эмиссии работает в звуковом диапазоне. Известен метод контроля оптического излучения ПР с помощью электронно-оптического дефектоскопа. Он основан на регистрации пространственно временного распределения яркости свечения и определении по ее характеру дефектных изоляторов. Для этих же целей с разной эффективностью применяют радиотехнический и ультразвуковой методы, а также метод контроля ультрафиолетового излучения с помощью электронно-оптического дефектоскопа «Филин».

Метод ультразвукового зондирования. Скорость распространения ультразвука в облучаемом объекте зависит от его состояния (наличия дефектов, трещин, коррозии). Это свойство используется для диагностики состояния бетона, древесины и металла, которые широко применяются в энергохозяйстве, например, в качестве материала опор.

Приоритетность диагностического контроля элементов двигателя может изменяться по мере наработки. Так, с ростом времени эксплуатации двигателей имеет место некоторое увеличение их отказов, связанных с техническим состоянием изоляции.

Отказы изоляции распределяются следующим образом:

повреждение корпусной изоляции, 45 – 55 %

дефекты в соединениях обмоток, 15 – 20 %

отказы из-за увлажнения корпусной изоляции, 10 – 12 %

повреждение винтовой изоляции, 4 – 6 %

дефекты в коробке выводов, 2 – 3 %

дефекты выводов обмоток, 1,5 – 2,5 %

перенапряжения при замыканиях, 2 – 3 %

прочие дефекты, 5 – 7 %.

Методы и средства диагностирования состояния изоляции электрооборудования в настоящее время разработаны достаточно полно. Разработанные критерии позволяют выявить отказы изоляции на стадии зарождающихся дефектов и определить неисправности при профилактических ремонтах электродвигателей.

ВЫПОЛНИЛИ:ВАСИЛЬЕВ ДАНИИЛ

И МАСТЕРСКИХ ВИОЛЕТТА

Диагностика электрооборудования это комплекс средств и методов призванных определить техническое состояние и найти неисправности. После устранения неисправностей проводится контрольные испытания в электротехнической лаборатории. Диагностика электрооборудования позволяет, используя современные приборы определять состояние оборудования, не прибегая к его глубокой разборке. Благодаря своевременному диагностированию можно контролировать степень надежности электрооборудования.

Физико-химические методы . Энергетическое воздействие на изоляцию электрических устройств приводит к ее изменениям на молекулярном уровне. Это происходит вне зависимости от типа изоляции и завершается химическими реакциями с образованием новых химических соединений, причем под действием электромагнитного поля, температуры, вибрации одновременно идут процессы разложения и синтеза. Анализируя количество и состав появляющихся новых химических соединений можно делать выводы о состоянии всех элементов изоляции. Наиболее просто это сделать с жидкой углеводородной изоляцией, каковой являются минеральные масла, так как все или почти все образовавшиеся новые химические соединения остаются в замкнутом объеме.

Преимуществом физико-химических методов диагностического контроля является их высокая точность и независимость от электрических, магнитных и электромагнитных полей и от других энергетических воздействий, так как все исследования проводятся в физико-химических лабораториях. Недостатками этих методов является относительная дороговизна, и запаздывание от текущего времени, то есть неоперативный контроль.

Метод хроматографического контроля маслонаполненного оборудования. Этот метод основан на хроматографическом анализе различных газов, выделяющихся из масла и изоляции при дефектах внутри маслонаполненного электрооборудования. Алгоритмы определения дефектов, на ранней стадии их возникновения, основанные на анализе состава и концентрации газов, являются распространенными, хорошо проработанными для диагностики маслонаполненного электрооборудования и описаны в .

Оценка состояния маслонаполненного оборудования осуществляется на базе контроля:

Предельных концентраций газов;

Скорости нарастания концентраций газов;

Отношений концентраций газов.

Метод контроля диэлектрических характеристик изоляции . Метод основан на измерении диэлектрических характеристик, к которым относятся токи утечки, величины емкости, тангенс угла диэлектрических потерь (tg δ) и др. Абсолютные значения tgd, измеренные при напряжениях, близких к рабочему, а также его приращения при изменении испытательного напряжения, частоты и температуры, характеризуют качество и степень старения изоляции.

Для измерения tgd и емкости изоляции используются мосты переменного тока (мосты Шеринга). Метод используется для контроля высоковольтных измерительных трансформаторов и конденсаторов связи.

Метод инфракрасной термографии . Потери электрической энергии на нагрев элементов и узлов электрооборудования в процессе эксплуатации зависят от их технического состояния. Измеряя инфракрасное излучение, обусловленное нагревом, можно делать выводы о техническом состоянии электрооборудования. Невидимое инфракрасное излучение с помощью тепловизоров преобразуется в видимый человеком сигнал. Данный метод дистанционный, чувствительный, позволяющий регистрировать изменения температуры в доли градуса. Поэтому его показания сильно подвержены влияющим факторам, например, отражающей способности объекта измерения, температуре и состоянию окружающей среды, так как запыленность и влажность поглощают инфракрасное излучение, и др.

Оценка технического состояния элементов и узлов электрооборудования под нагрузкой производится либо сопоставлением температуры однотипных элементов и узлов (их излучение должно быть примерно одинаковым), либо по превышению допустимой температуры для данного элемента или узла. В последнем случае тепловизоры должны иметь встроенное оборудование для коррекции влияния температуры и параметров окружающей среды на результат измерения.

Метод вибродиагностики . Для контроля над техническим состоянием механических узлов электрооборудования используют связь параметров объекта (его массы и жесткости конструкции) со спектром частот собственной и вынужденной вибрации. Всякое изменение параметров объекта в процессе эксплуатации, в частности жесткости конструкции вследствие ее усталости и старения, вызывает изменение спектра. Чувствительность метода увеличивается с ростом информативных частот. Оценка состояния по смещению низкочастотных составляющих спектра менее эффективна.

Методы контроля частичных разрядов в изоляции . Процессы возникновения и развития дефектов изоляторов ВЛ, независимо от их материала, сопровождаются появлением электрических или частичных разрядов, которые, в свою очередь, порождают электромагнитные (в радио и оптическом диапазонах) и звуковые волны. Интенсивность проявления разрядов зависит от температуры и влажности атмосферного воздуха и связана с наличием атмосферных осадков. Такая зависимость получаемой диагностической информации от атмосферных условий требует совмещать процедуру диагностирования интенсивности разрядов в подвесной изоляции ЛЭП с необходимостью обязательного контроля температуры и влажности окружающей среды.

Для контроля широко применяются все виды и диапазоны излучения. Метод акустической эмиссии работает в звуковом диапазоне. Известен метод контроля оптического излучения ПР с помощью электронно-оптического дефектоскопа. Он основан на регистрации пространственно временного распределения яркости свечения и определении по ее характеру дефектных изоляторов. Для этих же целей с разной эффективностью применяют радиотехнический и ультразвуковой методы, а также метод контроля ультрафиолетового излучения с помощью электронно-оптического дефектоскопа «Филин».

Метод ультразвукового зондирования . Скорость распространения ультразвука в облучаемом объекте зависит от его состояния (наличия дефектов, трещин, коррозии). Это свойство используется для диагностики состояния бетона, древесины и металла, которые широко применяются в энергохозяйстве, например, в качестве материала опор.

В процессе эксплуатации СДПТМ с дизельным двигателем основные неисправности электрооборудования приходятся на аккумуляторные батареи, генератор с регулятором напряжения, стартер и другие потребители электроэнергии.

Комплексная проверка работоспособности аккумуляторной батареи проводится под нагрузкой по напряжению, которое при запуске двигателя стартером должно быть не менее 10,2 В, а при последовательном соединении двух батарей - не менее 20,4 В.

Поэлементное диагностирование аккумуляторных батарей включает проверку уровня и плотности электролита, степени заряженности элементов, наличия короткого замыкания пластин.

Уровень электролита должен быть на 10-15 мм выше сепараторных пластин. Наличие контакта пластин с воздухом приводит к быстрому снижению емкости батарей. При понижении уровня доливают дистиллированную воду, так как она испаряется быстрее, чем кислота. Плотность электролита замеряется ареометром. Разница между плотностью электролита в отдельных элементах не должна превышать 0,02 г/см3. Плотность электролита заряженной аккумуляторной батареи, приведенная к 15 °С, для условий Республики Беларусь и второй климатической зоны России рекомендуется 1,27 г/см3.

аряженность аккумуляторов определяют по плотности и напряжению. При разрядке аккумуляторных батарей плотность понижается. Так, снижение ее на 0,01 г/см3 соответствует разрядке аккумуляторной батареи на 6%. Заряженность элементов по напряжению проверяется нагрузочной вилкой. Если аккумулятор заряжен и исправен, то напряжение под нагрузкой в конце 5-й секунды остается в пределах 1,7-1,8 В. При снижении напряжения за это время на 1,4-1,5 В батарею отправляют на зарядку, которая осуществляется током, равным 0,07-0,10 ее емкости. Разница в напряжении отдельных элементов не должна превышать 0,15 В.

Нагрузочной вилкой при отключенных нагрузочных резисторах определяется короткое замыкание пластин. Для исправного элемента должно соблюдаться неравенство Е0 > 0,84 + g, где Е0 - электродвижущая сила элемента; g - плотность электролита. Если измеренная Е0 меньше расчетной, то в элементах имеется частичное короткое замыкание.

В настоящее время на СДПТМ в качестве источника электрической энергии применяют трехфазные синхронные генераторы. В них, как правило, устанавливаются выпрямители на кремниевых диодах, которые закрепляются на крышке генератора со стороны контактных колец. На таких генераторах запрещается соединять плюсовой провод с массой и отключать его от регулятора напряжения, так как это может привести, к пробою диодов.



Для определения работоспособности генератора проверяют частоту вращения якоря генератора, соответствующую его возбуждению без нагрузок и с нагрузкой (на начало отдачи и на полную отдачу при номинальном напряжении). При проверке на начало отдачи частота исправного генератора без нагрузки не должна превышать 1000 об/мин в момент достижения напряжения 12,5 В для 12-вольтного и 25 В для 24-вольтного электрооборудования. После возбуждения генератора нагрузку и частоту вращения плавно увеличивают до номинальных значений (табл. 11.9). Проверяется устойчивость работы под нагрузкой и наличие искренний на щетках коллектора. Без снятия нагрузки отключается генератор и повторно проверяется частота его возбуждения.

Если результаты измерений не соответствуют паспортным данным, то производится локализация неисправностей. При номинальном напряжении измеряется сила тока в обмотке возбуждения, который должен быть не более ЗА для 12-вольтных генераторов и не более 1 А для 24-вольтных.

Исправность элементов выпрямителя проверяют путем измерения обратного тока.

Необходимость разборочных операций генератора и регулятора напряжения определяют на основании результатов испытаний. К частым отказам генератора относятся: потери контакта между щетками и коллектором генератора или контактными кольцами, заедание щетки в щеткодержателе, износ щеток, попадание грязи и масла, снижение упругости пружин щеткодержателей и т. д.



При поэлементном диагностировании особое внимание уделяется состоянию щеточно-коллекторного соединения. Рабочая поверхность коллектора должна быть чистой и гладкой, без следов подгорания. При необходимости коллектор зачищают шкуркой со стеклянным покрытием зернистостью 80 и 100. Проверяют отсутствие замыкания щеткодержателей на массу, степень износа щеток и силу воздействия на них пружины.

Работоспособность механизма привода проверяется по легкости перемещения муфты, а исправность обмоток и силовых контактов тягового реле - по сопротивлению. При втянутом якоре реле зазор между упорной шайбой и втулкой привода должен быть равен 1,0±0,5 мм.

Диагностирование контрольно-измерительных приборов осуществляется с помощью приборов Э-204 или моделей 531 и 537 в соответствии с инструкциями, прилагаемыми к ним.

При проверке амперметра шунт прибора Э-204 последовательно присоединяют к нему и сравнивают показания двух приборов. Отклонение в показаниях не должно превышать 15%.

Проверка измерителей давления производится подключением датчика в специальный штуцер прибора Э-204. Создается максимальное давление, и при его плавном снижении показания проверяемого указателя сравниваются с контрольным значением. Отклонение не должно превышать 4%.

Термометр проверяют при помещении его датчика в нагреватель прибора Э-204, заполненный дистиллированной водой. По степени нагрева сравнивают показания проверяемого термометра с контрольным. Отклонение не должно превышать 6 °С.

При отклонениях давления и температуры, превышающих приведенные значения, проверяются датчики по силе потребляемого тока. Контроль уровня жидкости в системах СДМ осуществляется с использованием электромагнитных и магнитоэлектрических указателей уровня. Измерители уровня жидкости включают реостатные датчики. Работоспособность указателей в комплексе с датчиком проверяется по углу отклонения рычага.


36 Диагностирование металлоконструкций дорожно – строительных машин

Химический анализ металла . Наиболее распространенным материалом металлоконструкций кранов являются малоуглеродистые и низколегированные стали. Содержание углерода в стали не должно превышать 0,22 %, иначе снижаются ее пластические свойства. В то же время чрезмерное уменьшение углерода ухудшает качество сварных швов (свариваемость). Поэтому минимальное содержание углерода принято равным 0,1 %.

Стружка для анализа в количестве не менее 30 г может быть получена либо срубанием пневмозубилом с кромки элемента, либо путем сверления. Если стружку берут зубилом, то место пробы обрабатывают шлифовальной машиной, при этом обеспечивают плавную линию кромки. Сверление для взятия стружки производят сверлом диаметром до 8 мм, при этом кромка отверстия должна быть расположена не ближе 15 мм от кромки элемента конструкции. После сверления отверстие не заваривают.

Общий визуальный осмотр . Наибольшая вероятность появления дефектов наблюдается в периоды интенсивной эксплуатации кранов, в зимние периоды при отрицательной температуре. Таким образом, диагностирование металлических конструкций кранов должно предшествовать периодам эксплуатации, описанным выше. Статистика разрушений указывает на рациональность проведения диагностирования в октябре – ноябре и апреле – мае.

Визуальный осмотр металлоконструкций включает выявление дефектов, представляющих явную опасность возможного хрупкого разрушения и замер общих деформаций металлоконструкций.

Невооруженным глазом должны быть осмотрены все видимые поверхности сварных швов. При выявлении трещин поверхности металла, сварных швов и околошовной зоны должны быть зачищены от грязи. Те места, где имеются трещины в краске и потеки ржавчины из них, очищают до металла и осматривают через лупу с 6…8-кратным увеличением. Чтобы убедиться в наличии трудно различимых трещин, снимают острым зубилом тонкую стружку металла по направлению предполагаемой трещины. Раздвоение стружки подтверждает наличие трещины в данном месте. Наличие дефектов на торце стыковых швов уточняют путем зачистки шва и протравливания зачищенной поверхности 15…20 %-ным водным раствором азотной кислоты. Полученный таким образом макрошлиф рассматривают через лупу. Если в очищенном от краски металле не обнаружено дефектов, то сразу же после осмотра его следует загрунтовать, а затем окрасить.

Ослабление заклепок обнаруживают постукиванием молотка. Заклепки с дефектом при ударе издают глухой дребезжащий звук. Дефектами заклепочного соединения являются ржавые потеки, выступающие из-под заклепок, неплотное прилегание элементов, шелушение краски.

Если трещина не просматривается через лупу с шестрикратным. увеличением, то применяют один из методов неразрушающего контроля. В условиях производства более простыми являются капиллярные методы – методы керосиновой или цветной пробы. Керосиновая проба заключается в следующем. Место предполагаемой трещины зачищают до блеска, смачивают его керосином и вытирают насухо. Затем поверхность покрывают слоем мела. Трещина проявляется при обстукивании поверхности молотком. В цветной пробе используют смесь керосина (70%) с трансформаторным маслом (30 %) и добавкой яркого красителя, например краски «Судан III», из расчета 10 г на 1 л смеси.

В клепаных и сварных конструкциях можно наблюдать трещины в срединном слое металла вдоль прокатки (расслоение металла). Расслоение – опасный вид дефекта, который характеризуется выпучиванием поверхности при сварке и появлением волосяных трещин на поверхности.

Для диагностирования металлоконструкций радиографическими методами непосредственно на машине, на высоте и в труднодоступных местах рекомендуется применять портативные, малогабаритные, импульсные рентгеновские аппараты.

Поверхностные трещины радиационными методами выявлять не рекомендуется, так как их чувствительность ниже разрешающей способности визуальных методов.

Применение ультразвуковых методов рекомендуется в полустационарных условиях для выявления скрытых внутренних дефектов в сварных швах: трещин, непроваров, включений, расслоений. При контроле сварных швов крановых металлоконструкций метод является дополнительным к радиографическому.

Применение портативных ультразвуковых толщиномеров обеспечивает измерение толщины с дискретностью 0,1…0,01 мм при одностороннем доступе, непосредственно на машине, на высоте, без демонтажа конструкции. Рекомендуется применять их для измерения коррозионного износа металлоконструкций, особенно в закрытых полостях коробчатого и трубчатого сечения.

Электромагнитными методами рекомендуется выявлять поверхностные и подповерхностные дефекты: усталостные и технологические трещины, раковины, неметаллические включения, волосовины, пористость, очаги коррозионного поражения, качество термообработки. Методы обладают портативностью и автономностью аппаратуры, высокой чувствительностью и производительностью. Для контроля применяют статические и динамические электромагнитные дефектоскопы с накладными датчиками.

Для контроля деталей сложной формы целесообразно применять дефектоскопы со сменными датчиками разной конструкции. При выборе датчика, из числа входящих в комплект дефектоскопа, необходимо учитывать как форму и размеры зоны контроля, так и ее доступность.

Визуально-оптический контроль предназначен для обнаружения поверхностных дефектов: трещин, коррозионных и эрозионных повреждений, разрывов, остаточных деформаций. Визуальный метод контроля обеспечивает обнаружение трещин с раскрытием более 0,1 мм (ГОСТ 23479–79), а визуально-оптический при увеличении прибором в 20…30 раз – не менее 0,02 мм, точность метода в значительной степени зависит от контраста дефектов с фоном, уровня освещенности и способа освещения. Визуально-оптический контроль отличается высокой производительностью, сравнительной простотой приборного обеспечения, достаточно высокой разрешающей способностью.

Капиллярные методы предназначены для обнаружения поверхностных и сквозных дефектов в объектах контроля, определения их расположения, протяженности и ориентации по поверхности. Подробная методика проведения контроля капиллярными методами, применяемые материалы, классификация методов приведены в ГОСТ 18442–80.

Акустическая эмиссия (АЭ) – изучение упругих волн, возникающих в процессе перестройки внутренней структуры твердых тел. Акустическая эмиссия появляется при пластической деформации твердых материалов при возникновении и развитии в них дефектов, например при образовании, в них трещин.

Сварные соединения с помощью АЭ можно контролировать при внешнем механическом нагружении конструкции. Использование АЭ для оценки качества сварного шва определяется возможностью выделения сигналов, порождаемых развивающимися дефектами, из общей массы сигналов, большинство из которых являются мешающими (шумами).

Метод целесообразно применять для решения следующих задач: наблюдения за ростом трещин в процессе; постоянного надзора в эксплуатации за участками сварных конструкций, находящихся в напряженных состояниях и в которых могут образовываться трещины; изучения особенностей роста усталостных трещин в разных условиях эксплуатации; диагностирования технического состояния конструкции.